Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery

Marco Keller, Alissa Guebeli, Florian Thieringer, Philipp Honigmann, Marco Keller, Alissa Guebeli, Florian Thieringer, Philipp Honigmann

Abstract

Three-dimensional (3D) printing is spreading in hand surgery. There is an increasing number of practical applications like the training of junior hand surgeons, patient education, preoperative planning, and 3D printing of customized casts, customized surgical guides, implants, and prostheses. Some high-quality studies highlight the value for surgeons, but there is still a lack of high-level evidence for improved clinical endpoints and hence actual impact on the patient's outcome. This article provides an overview over the latest applications of 3D printing in hand surgery and practical experience of implementing them into daily clinical routine.

Conflict of interest statement

The senior author has an honorary-based consultant function at the company Medartis AG, Basel, Switzerland. Our research group is supported by the company Spentys© (Spentys SA/NV, Brussels, BE) with printing materials and technical support.

Copyright © 2021 Marco Keller et al.

Figures

Figure 1
Figure 1
1 : 1 model based on 3D-Computertomography (CT) data of the carpal bones printed on an FDM-printer. This model allows analysis of intracarpal relationships und surgical training.
Figure 2
Figure 2
(a–d) 3D-printed 1 : 1 model of a displaced, multifragmentary, intra-articular fracture of the proximal part of the first metacarpal bone. The model was used to educate the patient about possible surgical treatment options and for preoperative planning.
Figure 3
Figure 3
(a) Dorsopalmar radiographic view of a displaced, multifragmentary, intra-articular fracture of the distal radius, and ulna of a 45-year-old female. (b, c) Coronar view of the 3D-CT reconstruction and the equivalent view on the 3D-printed Polypropylene-model. (d, e) Sagittal view (radial aspect) of the 3D-CT reconstruction and the equivalent view on the 3D-printed Polypropylene-model. (f, g) Sagittal view (ulnar aspect) of the 3D-CT reconstruction and the equivalent view on the 3D-printed Polypropylene-model. (h, i) Axial CT-projection and the equivalent view on the 3D-printed Polypropylene-model allowing an overview on the intra-articular key fragments of the distal radius fracture.
Figure 4
Figure 4
(a, b) 3D-scanning of the injured forearm using a tablet with an optical sensor (“Spentys© Point-of-Care Solution”, Spentys SA/NV, Brussel, BE). (c) Virtual adjustment of the wrist position if necessary (d, e) Designing of the forearm cast (“Polycast©” [Spentys SA/NV, Brussels, BE]) and generating an STL-file. (f) In-hospital, overnight printing using an FDM-printer with Polypropylene- (PP-) filament. (g) Fitted customized forearm-cast with ventilation openings and Velcro-Fasteners.
Figure 5
Figure 5
(a, b) Patient-specific 3D-printed partial joint replacement made of titanium (Xilloc Medical B.V., Sittard-Geleen, ND). (c) The shaft was designed with porous surface to enable osteointegration. (d) Lateral radiographic view of the finger after implantation of the patient-specific implant fitting precisely to the bone defect.
Figure 6
Figure 6
(a–c) “Flexy Hand 2”, a 3D-printed open source hand prosthesis (http://enablingthefuture.org/upper-limb-prosthetics/the-flexy-hand/).

References

    1. Kodama H. A scheme for three-dimensional display by automatic fabrication of three-dimensional model. IEICE Transactions on Electronics. 1981;J64-C:237–241.
    1. Hull C. Apparatus for production of three-dimensional objects by stereolithography. 1986. US Patent 638905.
    1. Matter-Parrat V., Liverneaux P. 3D printing in hand surgery. Hand Surgery and Rehabilitation. 2019;38(6):338–347. doi: 10.1016/j.hansur.2019.09.006.
    1. Negi S., Dhiman S., Kumar Sharma R. Basics and applications of rapid prototyping medical models. Rapid Prototyping Journal. 2014;20(3):256–267. doi: 10.1108/RPJ-07-2012-0065.
    1. Javaid M., Haleem A. Additive manufacturing applications in orthopaedics: a review. Journal of Clinical Orthopaedics and Trauma. 2018;9(3):202–206. doi: 10.1016/j.jcot.2018.04.008.
    1. Langridge B., Momin S., Coumbe B., Woin E., Griffin M., Butler P. Systematic review of the use of 3-dimensional printing in surgical teaching and assessment. Journal of Surgical Education. 2018;75(1):209–221. doi: 10.1016/j.jsurg.2017.06.033.
    1. AbouHashem Y., Dayal M., Savanah S., Štrkalj G. The application of 3D printing in anatomy education. Medical Education Online. 2015;20(1, article 29847) doi: 10.3402/meo.v20.29847.
    1. Huang Z., Song W., Zhang Y., et al. Three-dimensional printing model improves morphological understanding in acetabular fracture learning: a multicenter, randomized, controlled study. PLoS One. 2018;13(1, article e0191328) doi: 10.1371/journal.pone.0191328.
    1. Wu A., Wang K., Wang J., et al. The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Annals of Translational Medicine. 2018;6(20):p. 403. doi: 10.21037/atm.2018.09.59.
    1. Lazarus P., Pire E., Sapa C., et al. Design and evaluation of a new synthetic wrist procedural simulator (Wristsim ®) for training of distal radius fracture fixation by volar plating. Hand Surgery and Rehabilitation. 2017;36(4):275–280. doi: 10.1016/j.hansur.2017.03.002.
    1. Naroura I., Hidalgo Diaz J. J., Xavier F., et al. Teaching of distal radius shortening osteotomy: three-dimensional procedural simulator versus bone procedural simulator. The Journal of Hand Surgery, European Volume. 2018;43(9):961–966. doi: 10.1177/1753193417754179.
    1. Chen C., Cai L., Zhang C., Wang J., Guo X., Zhou Y. Treatment of die-punch fractures with 3D printing technology. Journal of Investigative Surgery. 2017;31(5):385–392. doi: 10.1080/08941939.2017.1339150.
    1. Corona P. S., Vicente M., Tetsworth K., Glatt V. Preliminary results using patient-specific 3d printed models to improve preoperative planning for correction of post-traumatic tibial deformities with circular frames. Injury. 2018;49(Suppl 2):S51–S59. doi: 10.1016/j.injury.2018.07.017.
    1. Xie L., Chen C., Zhang Y., Zheng W., Chen H., Cai L. Three-dimensional printing assisted ORIF versus conventional ORIF for Tibial plateau fractures: a systematic review and meta-analysis. International Journal of Surgery. 2018;57:35–44. doi: 10.1016/j.ijsu.2018.07.012.
    1. Bizzotto N., Tami I., Tami A., et al. 3D printed models of distal radius fractures. Injury. 2016;47(4):976–978. doi: 10.1016/j.injury.2016.01.013.
    1. Kong L., Yang G., Yu J., et al. Surgical treatment of intra-articular distal radius fractures with the assistance of three-dimensional printing technique. Medicine. 2020;99(8, article e19259) doi: 10.1097/MD.0000000000019259.
    1. Jew N., Lipman J. D., Carlson M. G. The use of three-dimensional printing for complex scaphoid fractures. The Journal of Hand Surgery. 2019;44(2):165.e1–165.e6. doi: 10.1016/j.jhsa.2018.10.018.
    1. Keller M., Kastenberger T., Anoar A. F., et al. Clinical and radiological results of the vascularized medial femoral condyle graft for scaphoid non-union. Archives of Orthopaedic and Trauma Surgery. 2020;140(6):835–842. doi: 10.1007/s00402-020-03386-7.
    1. Houdek M. T., Matsumoto J. M., Morris J. M., Bishop A. T., Shin A. Y. Technique for 3-dimesional (3D) modeling of osteoarticular medial femoral condyle vascularized grafting to replace the proximal pole of unsalvagable scaphoid nonunions. Techniques in Hand & Upper Extremity Surgery. 2016;20(3):117–124. doi: 10.1097/BTH.0000000000000129.
    1. Taylor E. M., Iorio M. L. Surgeon-based 3D printing for microvascular bone flaps. Journal of Reconstructive Microsurgery. 2017;33(6):441–445. doi: 10.1055/s-0037-1600133.
    1. Msallem B., Sharma N., Cao S., Halbeisen F. S., Zeilhofer H. F., Thieringer F. M. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology. Journal of Clinical Medicine. 2020;9(3):p. 817. doi: 10.3390/jcm9030817.
    1. Sigron G. R., Rüedi N., Chammartin F., et al. Three-dimensional analysis of isolated orbital floor fractures pre- and post-reconstruction with standard titanium meshes and “hybrid” patient-specific implants. Journal of Clinical Medicine. 2020;9(5, article E1579):p. 1579. doi: 10.3390/jcm9051579.
    1. Hoogervorst P., Knox R., Tanaka K., et al. A biomechanical comparison of fiberglass casts and 3-dimensional-printed, open-latticed, ventilated casts. Hand. 2020;15(6):842–849. doi: 10.1177/1558944719831341.
    1. Cazon A., Kelly S., Paterson A. M., Bibb R. J., Campbell R. I. Analysis and comparison of wrist splint designs using the finite element method: multi-material three-dimensional printing compared to typical existing practice with thermoplastics. Proceedings of the Institution of Mechanical Engineers. Part H. 2017;231(9):881–897. doi: 10.1177/0954411917718221.
    1. Chen Y. J., Lin H., Zhang X., Huang W., Shi L., Wang D. Application of 3D-printed and patient-specific cast for the treatment of distal radius fractures: Initial Experience. 3D Printing in Medicine. 2017;3(1):p. 11. doi: 10.1186/s41205-017-0019-y.
    1. Graham J., Wang M., Frizzell K., Watkins C., Beredjiklian P., Rivlin M. Conventional vs 3-dimensional printed cast wear comfort. Hand. 2020;15(3):388–392. doi: 10.1177/1558944718795291.
    1. Lin H., Shi L., Wang D. A Rapid and intelligent designing technique for patient-specific and 3D-printed orthopedic cast. 3D Printing in Medicine. 2016;2(1) doi: 10.1186/s41205-016-0007-7.
    1. Li J., Tanaka H. Rapid customization system for 3D-printed splint using programmable modeling technique - a practical approach. 3D Printing in Medicine. 2018;4(1):p. 5. doi: 10.1186/s41205-018-0027-6.
    1. Kienzle C., Schäfer M. Integration of additive manufacturing processes (3D Printing) in orthopaedic technology fitting routine. Dortmund: Verlag Orthopädie-Technik; 2018.
    1. Nam H. S., Seo C. H., Joo S. Y., Kim D. H., Park D. S. The application of three-dimensional printed finger splints for post hand burn patients: a case series investigation. Annals of Rehabilitation Medicine. 2018;42(4):634–638. doi: 10.5535/arm.2018.42.4.634.
    1. Hamada Y., Gotani H., Sasaki K., Tanaka Y., Egawa H., Kanchanathepsak T. Corrective osteotomy of malunited diaphyseal fractures of the forearm simplified using 3-dimensional CT data: proposal of our simple strategy through case presentation. Hand. 2017;12(5):NP95–NP98. doi: 10.1177/1558944717692087.
    1. Byrne A. M., Impelmans B., Bertrand V., van Haver A., Verstreken F. Corrective osteotomy for malunited diaphyseal forearm fractures using preoperative 3-dimensional planning and patient-specific surgical guides and implants. The Journal of Hand Surgery. 2017;42(10):836.e1–836.e12. doi: 10.1016/j.jhsa.2017.06.003.
    1. Schweizer A., Fürnstahl P., Nagy L. Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. The Journal of Hand Surgery. 2013;38(12):2339–2347. doi: 10.1016/j.jhsa.2013.09.023.
    1. Kunz M., Ma B., Rudan J. F., Ellis R. E., Pichora D. R. Image-guided distal radius osteotomy using patient-specific instrument guides. The Journal of Hand Surgery. 2013;38(8):1618–1624. doi: 10.1016/j.jhsa.2013.05.018.
    1. Roner S., Carrillo F., Vlachopoulos L., Schweizer A., Nagy L., Fuernstahl P. Improving accuracy of opening-wedge osteotomies of distal radius using a patient-specific ramp-guide technique. BMC Musculoskeletal Disorders. 2018;19(1):p. 374. doi: 10.1186/s12891-018-2279-0.
    1. Schweizer A., Mauler F., Vlachopoulos L., Nagy L., Fürnstahl P. Computer-assisted 3-dimensional reconstructions of scaphoid fractures and nonunions with and without the use of patient-specific guides: early clinical outcomes and postoperative assessments of reconstruction accuracy. The Journal of Hand Surgery. 2016;41(1):59–69. doi: 10.1016/j.jhsa.2015.10.009.
    1. Honigmann P., Thieringer F., Steiger R., Haefeli M., Schumacher R., Henning J. A. A Simple 3-Dimensional Printed Aid for a Corrective Palmar Opening Wedge Osteotomy of the Distal Radius. The Journal of Hand Surgery. 2016;41(3):464–469. doi: 10.1016/j.jhsa.2015.12.022.
    1. Roner S., Vlachopoulos L., Nagy L., Schweizer A., Fürnstahl P. Accuracy and early clinical outcome of 3-dimensional planned and guided single-cut osteotomies of malunited forearm bones. The Journal of Hand Surgery. 2017;42(12):1031.e1–1031.e8. doi: 10.1016/j.jhsa.2017.07.002.
    1. Yin H., Xu J., Xu W. 3-Dimensional Printing-Assisted Percutaneous Fixation for Acute Scaphoid Fracture: 1-Shot Procedure. The Journal of Hand Surgery. 2017;42(4):301.e1–301.e5. doi: 10.1016/j.jhsa.2017.01.017.
    1. DeWolf M. C., Hartov A., Fortney T. A., Warhold L. G. Three-dimensional printed targeting device for scaphoid fracture fixation. Hand. 2020 doi: 10.1177/1558944720906502.
    1. de Muinck Keizer R. J. O., Lechner K. M., Mulders M. A. M., Schep N. W. L., Eygendaal D., Goslings J. C. Three-dimensional virtual planning of corrective osteotomies of distal radius malunions: a systematic review and meta-analysis. Strategies in Trauma and Limb Reconstruction. 2017;12(2):77–89. doi: 10.1007/s11751-017-0284-8.
    1. Bauermeister A. J., Zuriarrain A., Newman M. I. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Annals of Plastic Surgery. 2016;77(5):569–576. doi: 10.1097/SAP.0000000000000671.
    1. Chamo D., Msallem B., Sharma N., Aghlmandi S., Kunz C., Thieringer F. M. Accuracy assessment of molded, patient-specific polymethylmethacrylate craniofacial implants compared to their 3D printed originals. Journal of Clinical Medicine. 2020;9(3):p. 832. doi: 10.3390/jcm9030832.
    1. Kim S. J., Jo Y. H., Choi W. S., et al. Biomechanical properties of 3-dimensional printed volar locking distal radius plate: comparison with conventional volar locking plate. The Journal of Hand Surgery. 2017;42(9):747.e1–747.e6. doi: 10.1016/j.jhsa.2017.05.009.
    1. Beltrami G. Custom 3D-printed finger proximal phalanx as salvage of limb function after aggressive recurrence of giant cell tumour. BMJ Case Reports. 2018;(article bcr2018226007) doi: 10.1136/bcr-2018-226007.
    1. Lu M., Min L., Xiao C., et al. Uncemented three-dimensional-printed prosthetic replacement for giant cell tumor of distal radius: a new design of prosthesis and surgical techniques. Cancer Management and Research. 2018;Volume 10:265–277. doi: 10.2147/CMAR.S146434.
    1. Xie M. M., Tang K. L., Yuan C. S. 3D printing lunate prosthesis for stage IIIc Kienböck’s disease: a case report. Archives of Orthopaedic and Trauma Surgery. 2018;138(4):447–451. doi: 10.1007/s00402-017-2854-0.
    1. Honigmann P., Sharma N., Okolo B., Popp U., Msallem B., Thieringer F. M. Patient-specific surgical implants made of 3D printed PEEK: material, technology, and scope of surgical application. BioMed Research International. 2018;2018:8. doi: 10.1155/2018/4520636.4520636
    1. Honigmann P., Schumacher R., Marek R., Büttner F., Thieringer F., Haefeli M. A three-dimensional printed patient-specific scaphoid replacement: a cadaveric study. The Journal of Hand Surgery, European Volume. 2018;43(4):407–412. doi: 10.1177/1753193418757634.
    1. Burn M. B., Ta A., Gogola G. R. Three-dimensional printing of prosthetic hands for children. The Journal of Hand Surgery. 2016;41(5):e103–e109. doi: 10.1016/j.jhsa.2016.02.008.
    1. Yoshikawa M., Sato R., Higashihara T., Ogasawara T., Kawashima N. Rehand: realistic electric prosthetic hand created with a 3D printer. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Aug 2015; Milan, Italy. pp. 2470–2473.
    1. Zuniga J., Katsavelis D., Peck J., et al. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Research Notes. 2015;8(1):p. 10. doi: 10.1186/s13104-015-0971-9.
    1. Alturkistani R., A K., Devasahayam S., et al. Affordable passive 3D-printed prosthesis for persons with partial hand amputation. Prosthetics and Orthotics International. 2020;44(2):92–98. doi: 10.1177/0309364620905220.
    1. D’Alessio J., Christensen A. 3D Printing in Orthopaedic Surgery. Elsevier B.V.; 2019. Chapter 7-3D printing for commercial orthopedic applications: advances and challenges; pp. 65–83.
    1. FDA. Technical Considerations for Additive Manufactured Medical Devices, Guidance for Industry and FDA Staff. .
    1. European Union Medical Device Regulation. (Council Regulation 2017/745 of 5 April 2017 concerning medical devices), .
    1. Graham J., Peck J. PEEK Biomaterials Handbook. William Andrew Publishing; 2019. Chapter 17 FDA Regulation of Polyaryletheretherketone Implants; pp. 431–445.

Source: PubMed

3
Se inscrever