High Cervical Spinal Cord Stimulation: A One Year Follow-Up Study on Motor and Non-Motor Functions in Parkinson's Disease

Paolo Mazzone, Fabio Viselli, Stefano Ferraina, Margherita Giamundo, Massimo Marano, Marco Paoloni, Francesco Masedu, Annamaria Capozzo, Eugenio Scarnati, Paolo Mazzone, Fabio Viselli, Stefano Ferraina, Margherita Giamundo, Massimo Marano, Marco Paoloni, Francesco Masedu, Annamaria Capozzo, Eugenio Scarnati

Abstract

Background: The present study investigated the effectiveness of stimulation applied at cervical levels on pain and Parkinson's disease (PD) symptoms using either tonic or burst stimulation mode.

Methods: Tonic high cervical spinal cord stimulation (T-HCSCS) was applied on six PD patients suffering from low back pain and failed back surgery syndrome, while burst HCSCS (B-HCSCS) was applied in twelve PD patients to treat primarily motor deficits. Stimulation was applied percutaneously with quadripolar or octapolar electrodes. Clinical evaluation was assessed by the Unified Parkinson's Disease Rating Scale (UPDRS) and the Hoehn and Yahr (H&Y) scale. Pain was evaluated by a visual analog scale. Evaluations of gait and of performance in a cognitive motor task were performed in some patients subjected to B-HCSCS. One patient who also suffered from severe autonomic cardiovascular dysfunction was investigated to evaluate the effectiveness of B-HCSCS on autonomic functions.

Results: B-HCSCS was more effective and had more consistent effects than T-HCSCS in reducing pain. In addition, B-HCSCS improved UPDRS scores, including motor sub-items and tremor and H&Y score. Motor benefits appeared quickly after the beginning of B-HCSCS, in contrast to long latency improvements induced by T-HCSCS. A slight decrease of effectiveness was observed 12 months after implantation. B-HCSCS also improved gait and ability of patients to correctly perform a cognitive-motor task requiring inhibition of a prepared movement. Finally, B-HCSCS ameliorated autonomic control in the investigated patient.

Conclusions: The results support a better usefulness of B-HCSCS compared to T-HCSCS in controlling pain and specific aspects of PD motor and non-motor deficits for at least one year.

Keywords: Parkinson’s disease; Valsava maneuver; burst stimulation; cervical spinal cord stimulation; gait; reaction time; tonic stimulation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A,C) Position of active contacts and type of electrode in Group I and Group II patients. (B,D) Representative examples of a quadripolar and octapolar electrode inserted at cervical level.
Figure 2
Figure 2
Schematic representation of the cognitive–motor task. (A) In Go trials, the subjects had to respond by moving a joystick at the presentation of a green arrow to generate the reaction time (RT). (B) In stop trials, they had to suppress the ongoing movement if a red square was presented in the interval within the reaction time window of the Go trial. The interval between presentation of the stop signal and suppression of movement represented the stop signal reaction time (SSRT).
Figure 3
Figure 3
(A) Tonic stimulation (red) UPDRS scores at 3, 6, and 12 months differed significantly compared to presurgery, stimulation OFF, and acute stimulation values (# p < 0.001). Burst stimulation (blue) improved UPDRS scores significantly after acute stimulation as well as at 3, 6, and 12 months (° p < 0.001) compared to presurgery and stimulation OFF values. Burst stimulation was more effective than tonic stimulation at all the timepoints considered (* p < 0.001). (B) 27–31 motor sub-items evaluations at 3, 6, and 12 months differed significantly during tonic stimulation compared to presurgery, stimulation OFF, and acute stimulation values (# p < 0.05). Burst stimulation significantly improved motor sub-items comparing acute, stimulation OFF and 3, 6, and 12 months to presurgery value (° p < 0.001). Burst stimulation was significantly more effective than tonic stimulation in the acute condition (* p < 0.05). (C) Hoehn and Yahr evaluations at 3, 6, and 12 months differed significantly during tonic stimulation compared to presurgery, stimulation OFF, and acute stimulation values (# p < 0.001). Burst stimulation significantly improved Hoehn and Yahr score comparing acute, 3, 6, and 12 months to presurgery and stimulation OFF values (° p < 0.001). Burst stimulation was significantly more effective than tonic stimulation in the acute condition (* p < 0.05). Statistics were assessed by Friedman tests.
Figure 4
Figure 4
(A) Tremor was significantly reduced during burst stimulation at all time points compared to presurgery and stimulation OFF values (° p < 0.05). (B) Pain at 3, 6, and 12 months poststimulation was significantly reduced by both types of stimulation compared to the presurgery condition (#° p < 0.05). Statistics were assessed by Friedman tests.
Figure 5
Figure 5
Improvement of spatiotemporal gait parameters (gait speed, cadence, step length, stride length, step width, swing speed, stance duration, double support) in the two groups of patients investigated at six months under T-HCSCS (red) or B-HCSCS (blue). * p < 0.05: Control vs. T-OFF and B-OFF; # T-OFF vs. T-ON; ° B-OFF vs. B-ON (except cadence: p < 0.001) and stance duration (not significant). Statistics were assessed by Mann–Whitney tests.
Figure 6
Figure 6
In patients, burst stimulation reduced the duration of the SSRT, while the RT duration was unaffected. Go signal: * p < 0.05 controls vs. OFF and vs. ON; Stop signal: * p < 0.05 controls vs. OFF and vs. ON, ° p < 0.05 OFF vs. ON. Statistics were assessed by Mann–Whitney tests.

References

    1. Shealy C.N., Mortimer J.T., Reswick J.B. Electrical inhibition of pain by stimulation of the dorsal columns: Preliminary clinical report. Anesth. Analg. 1967;46:489–491. doi: 10.1213/00000539-196707000-00025.
    1. Gildenberg P.L. History of neuroaugmentative procedures. Neurosurg. Clin. N. Am. 2003;14:327–337. doi: 10.1016/S1042-3680(03)00012-3.
    1. Melzack R., Wall P.D. Pain mechanisms: A new theory. Science. 1965;150:971–979. doi: 10.1126/science.150.3699.971.
    1. Melzack R., Wall P.D. Evolution of pain theories. Int. Anesthesiol. Clin. 1970;8:3–34. doi: 10.1097/00004311-197000810-00003.
    1. Ropero Pelaez F.J., Taniguchi S. The Gate Theory of Pain Revisited: Modeling Different Pain Conditions with a Parsimonious Neurocomputational Model. Neural Plast. 2016;2016:4131395. doi: 10.1155/2016/4131395.
    1. Grill W.M., Craggs M.D., Foreman R.D., Ludlow C.L., Buller J.L. Emerging clinical applications of electrical stimulation: Opportunities for restoration of function. J. Rehabil. Res. Dev. 2001;38:641–653.
    1. Kowalski K.E., Romaniuk J.R., Kowalski T., DiMarco A.F. Effects of expiratory muscle activation via high-frequency spinal cord stimulation. J. Appl. Physiol (1985) 2017;123:1525–1531. doi: 10.1152/japplphysiol.00402.2017.
    1. Meier K. Spinal cord stimulation: Background and clinical application. Scand. J. Pain. 2014;5:175–181. doi: 10.1016/j.sjpain.2014.03.001.
    1. Fuentes R., Petersson P., Siesser W.B., Caron M.G., Nicolelis M.A. Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science. 2009;323:1578–1582. doi: 10.1126/science.1164901.
    1. Fuentes R., Petersson P., Nicolelis M.A. Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: Mechanistic approach. Eur. J. Neurosci. 2010;32:1100–1108. doi: 10.1111/j.1460-9568.2010.07417.x.
    1. Mendell L.M. Constructing and deconstructing the gate theory of pain. Pain. 2014;155:210–216. doi: 10.1016/j.pain.2013.12.010.
    1. Shinko A., Agari T., Kameda M., Yasuhara T., Kondo A., Tayra J.T., Sato K., Sasaki T., Sasada S., Takeuchi H., et al. Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson’s disease. PLoS ONE. 2014;9:e101468. doi: 10.1371/journal.pone.0101468.
    1. Yadav A.P., Nicolelis M.A.L. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Mov Disord. 2017;32:820–832. doi: 10.1002/mds.27033.
    1. Yadav A.P., Fuentes R., Zhang H., Vinholo T., Wang C.H., Freire M.A., Nicolelis M.A. Chronic spinal cord electrical stimulation protects against 6-hydroxydopamine lesions. Sci. Rep. 2014;4:3839. doi: 10.1038/srep03839.
    1. Agari T., Date I. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson’s disease. Neurol. Med. Chir (Tokyo) 2012;52:470–474. doi: 10.2176/nmc.52.470.
    1. Hassan S., Amer S., Alwaki A., Elborno A. A patient with Parkinson’s disease benefits from spinal cord stimulation. J. Clin. Neurosci. 2013;20:1155–1156. doi: 10.1016/j.jocn.2012.08.018.
    1. de Lima-Pardini A.C., Coelho D.B., Souza C.P., Souza C.O., Ghilardi M.G.D.S., Garcia T., Voos M., Milosevic M., Hamani C., Teixeira L.A., et al. Effects of spinal cord stimulation on postural control in Parkinson’s disease patients with freezing of gait. Elife. 2018;7:e37727. doi: 10.7554/eLife.37727.
    1. Pinto de S.C., Hamani C., Oliveira S.C., Lopez Contreras W.O., Dos Santos Ghilardi M.G., Cury R.G., Reis B.E., Jacobsen T.M., Talamoni F.E. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov. Disord. 2017;32:278–282. doi: 10.1002/mds.26850.
    1. Fenelon G., Goujon C., Gurruchaga J.M., Cesaro P., Jarraya B., Palfi S., Lefaucheur J.P. Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson’s disease. Parkinsonism Relat. Disord. 2012;18:213–214. doi: 10.1016/j.parkreldis.2011.07.015.
    1. Thiriez C., Gurruchaga J.M., Goujon C., Fenelon G., Palfi S. Spinal stimulation for movement disorders. Neurotherapeutics. 2014;11:543–552. doi: 10.1007/s13311-014-0291-0.
    1. Thevathasan W., Mazzone P., Jha A., Djamshidian A., Dileone M., Di Lazzaro V., Brown P. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology. 2010;74:1325–1327. doi: 10.1212/WNL.0b013e3181d9ed58.
    1. de Andrade E.M., Ghilardi M.G., Cury R.G., Barbosa E.R., Fuentes R., Teixeira M.J., Fonoff E.T. Spinal cord stimulation for Parkinson’s disease: A systematic review. Neurosurg. Rev. 2016;39:27–35. doi: 10.1007/s10143-015-0651-1.
    1. Ahmed S., Yearwood T., De R.D., Vanneste S. Burst and high frequency stimulation: Underlying mechanism of action. Expert Rev. Med. Devices. 2018;15:61–70. doi: 10.1080/17434440.2018.1418662.
    1. Courtney P., Espinet A., Mitchell B., Russo M., Muir A., Verrills P., Davis K. Improved Pain Relief with Burst Spinal Cord Stimulation for Two Weeks in Patients Using Tonic Stimulation: Results From a Small Clinical Study. Neuromodulation. 2015;18:361–366. doi: 10.1111/ner.12294.
    1. De Vos C.C., Bom M.J., Vanneste S., Lenders M.W., De R.D. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation. 2014;17:152–159. doi: 10.1111/ner.12116.
    1. De Ridder D., van der Loo E., Van der Kelen K., Menovsky T., Van de Heyning P., Moller A. Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially? Int. J. Med. Sci. 2007;4:242–246. doi: 10.7150/ijms.4.242.
    1. De Ridder D., Vanneste S., Plazier M., van der Loo E., Menovsky T. Burst spinal cord stimulation: Toward paresthesia-free pain suppression. Neurosurgery. 2010;66:986–990. doi: 10.1227/01.NEU.0000368153.44883.B3.
    1. De Ridder D., Plazier M., Kamerling N., Menovsky T., Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg. 2013;80:642–649. doi: 10.1016/j.wneu.2013.01.040.
    1. De Ridder D., Lenders M.W., De Vos C.C., Dijkstra-Scholten C., Wolters R., Vancamp T., Van L.P., Van H.T., Vanneste S. A 2-center comparative study on tonic versus burst spinal cord stimulation: Amount of responders and amount of pain suppression. Clin. J. Pain. 2015;31:433–437. doi: 10.1097/AJP.0000000000000129.
    1. De Ridder D., Perera S., Vanneste S. Are 10 kHz Stimulation and Burst Stimulation Fundamentally the Same? Neuromodulation. 2017;20:650–653. doi: 10.1111/ner.12614.
    1. Deer T.R., Campos L.W., Pope J.E. Evaluation of Abbott’s BurstDR stimulation device for the treatment of chronic pain. Expert Rev. Med. Devices. 2017;14:417–422. doi: 10.1080/17434440.2017.1330147.
    1. Meuwissen K.P.V., Gu J.W., Zhang T.C., Joosten E.A.J. Conventional-SCS vs. Burst-SCS and the Behavioral Effect on Mechanical Hypersensitivity in a Rat Model of Chronic Neuropathic Pain: Effect of Amplitude. Neuromodulation. 2018;21:19–30. doi: 10.1111/ner.12731.
    1. De Ridder D., Vancamp T., Lenders M.W., De Vos C.C., Vanneste S. Is preoperative pain duration important in spinal cord stimulation? A comparison between tonic and burst stimulation. Neuromodulation. 2015;18:13–17. doi: 10.1111/ner.12253.
    1. Schu S., Slotty P.J., Bara G., von K.M., Edgar D., Vesper J. A prospective, randomised, double-blind, placebo-controlled study to examine the effectiveness of burst spinal cord stimulation patterns for the treatment of failed back surgery syndrome. Neuromodulation. 2014;17:443–450. doi: 10.1111/ner.12197.
    1. Mazzone P., Paoloni M., Mangone M., Santilli V., Insola A., Fini M., Scarnati E. Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus in idiopathic Parkinson’s disease: Effects on gait initiation and performance. Gait Posture. 2014;40:357–362. doi: 10.1016/j.gaitpost.2014.05.002.
    1. Mazzone P., Vitale F., Capozzo A., Viselli F., Scarnati E. Deep brain stimulation of the pedunculopontine tegmental nucleus improves static balance in Parkinson’s disease. In: Krames E., Hunter Peckham P., Rezai A., editors. Neuromodulation 2nd. Academic Press Elsevier; New York, NY, USA: 2018. pp. 967–976.
    1. Benis D., David O., Piallat B., Kibleur A., Goetz L., Bhattacharjee M., Fraix V., Seigneuret E., Krack P., Chabardes S., et al. Response inhibition rapidly increases single-neuron responses in the subthalamic nucleus of patients with Parkinson’s disease. Cortex. 2016;84:111–123. doi: 10.1016/j.cortex.2016.09.006.
    1. Brunamonti E., Ferraina S., Pare M. Controlled movement processing: Evidence for a common inhibitory control of finger, wrist, and arm movements. Neuroscience. 2012;215:69–78. doi: 10.1016/j.neuroscience.2012.04.051.
    1. Mione V., Canterini S., Brunamonti E., Pani P., Donno F., Fiorenza M.T., Ferraina S. Both the COMT Val158Met single-nucleotide polymorphism and sex-dependent differences influence response inhibition. Front. Behav. Neurosci. 2015;9:127. doi: 10.3389/fnbeh.2015.00127.
    1. Olivito G., Brunamonti E., Clausi S., Pani P., Chiricozzi F.R., Giamundo M., Molinari M., Leggio M., Ferraina S. Atrophic degeneration of cerebellum impairs both the reactive and the proactive control of movement in the stop signal paradigm. Exp. Brain Res. 2017;235:2971–2981. doi: 10.1007/s00221-017-5027-z.
    1. Battaglia-Mayer A., Buiatti T., Caminiti R., Ferraina S., Lacquaniti F., Shallice T. Correction and suppression of reaching movements in the cerebral cortex: Physiological and neuropsychological aspects. Neurosci. Biobehav. Rev. 2014;42:232–251. doi: 10.1016/j.neubiorev.2014.03.002.
    1. Rocchi C., Pierantozzi M., Galati S., Chiaravalloti A., Pisani V., Prosperetti C., Lauretti B., Stampanoni B.M., Olivola E., Schillaci O., et al. Autonomic Function Tests and MIBG in Parkinson’s Disease: Correlation to Disease Duration and Motor Symptoms. CNS Neurosci. Ther. 2015;21:727–732. doi: 10.1111/cns.12437.
    1. Rocchi C., Pierantozzi M., Pisani V., Marfia G.A., Di G.A., Stanzione P., Bernardi G., Stefani A. The impact of rotigotine on cardiovascular autonomic function in early Parkinson’s disease. Eur. Neurol. 2012;68:187–192. doi: 10.1159/000339000.
    1. Pstras L., Thomaseth K., Waniewski J., Balzani I., Bellavere F. The Valsalva manoeuvre: Physiology and clinical examples. Acta Physiol. (Oxf.) 2016;217:103–119. doi: 10.1111/apha.12639.
    1. Verbruggen F., Logan G.D. Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci. Biobehav. Rev. 2009;33:647–661. doi: 10.1016/j.neubiorev.2008.08.014.
    1. Nishioka K., Nakajima M. Beneficial therapeutic effects of spinal cord stimulation in advanced cases of Parkinson’s disease with intractable chronic pain: A case series. Neuromodulation. 2015;18:751–753. doi: 10.1111/ner.12315.
    1. Santana M.B., Halje P., Simplicio H., Richter U., Freire M.A.M., Petersson P., Fuentes R., Nicolelis M.A.L. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron. 2014;84:716–722. doi: 10.1016/j.neuron.2014.08.061.
    1. Crosby N.D., Weisshaar C.L., Smith J.R., Zeeman M.E., Goodman-Keiser M.D., Winkelstein B.A. Burst and Tonic Spinal Cord Stimulation Differentially Activate GABAergic Mechanisms to Attenuate Pain in a Rat Model of Cervical Radiculopathy. IEEE Trans. Biomed. Eng. 2015;62:1604–1613. doi: 10.1109/TBME.2015.2399374.
    1. Ahmed Z., Wieraszko A. Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of glutamate analog, D-2,3-(3)H-aspartic acid. J. Appl. Physiol. (1985) 2012;112:1576–1592. doi: 10.1152/japplphysiol.00967.2011.
    1. Garcia-Rill E., Luster B., D’Onofrio S., Mahaffey S., Bisagno V., Urbano F.J. Pedunculopontine arousal system physiology—Deep brain stimulation (DBS) Sleep Sci. 2015;8:153–161. doi: 10.1016/j.slsci.2015.09.001.
    1. Garcia-Rill E., Luster B., D’Onofrio S., Mahaffey S., Bisagno V., Urbano F.J. Implications of gamma band activity in the pedunculopontine nucleus. J. Neural Transm. (Vienna) 2016;123:655–665. doi: 10.1007/s00702-015-1485-2.
    1. Mazzone P., Vilela F.O., Viselli F., Insola A., Sposato S., Vitale F., Scarnati E. Our first decade of experience in deep brain stimulation of the brainstem: Elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J. Neural Transm. (Vienna) 2016;123:751–767. doi: 10.1007/s00702-016-1518-5.
    1. Garcia-Rill E., Mahaffey S., Hyde J.R., Urbano F.J. Bottom-up gamma maintenance in various disorders. Neurobiol. Dis. 2018 doi: 10.1016/j.nbd.2018.01.010.
    1. Mazzone P., Pisani R., Pizio N., Arrigo A., Nobili F. Cerebral blood flow and somatosensory evoked response changes induced by spinal cord stimulation: Preliminary follow-up observations. Stereotact. Funct. Neurosurg. 1994;62:179–185. doi: 10.1159/000098615.
    1. Mazzone P., Pisani R., Nobili F., Arrigo A., Gambaro M., Rodriguez G. Assessment of regional cerebral blood flow during spinal cord stimulation in humans. Stereotact. Funct. Neurosurg. 1995;64:197–201.
    1. Mazzone P., Rodriguez G., Arrigo A., Nobili F., Pisani R., Rosadini G. Cerebral haemodynamic changes induced by spinal cord stimulation in man. Ital. J. Neurol. Sci. 1996;17:55–57. doi: 10.1007/BF01995709.
    1. Rasche D., Siebert S., Stippich C., Kress B., Nennig E., Sartor K., Tronnier V.M. Spinal cord stimulation in Failed-Back-Surgery-Syndrome. Preliminary study for the evaluation of therapy by functional magnetic resonance imaging (fMRI) Schmerz. 2005;19:497–500. doi: 10.1007/s00482-005-0388-9.
    1. Si J., Dang Y., Zhang Y., Li Y., Zhang W., Yang Y., Cui Y., Lou X., He J., Jiang T. Spinal Cord Stimulation Frequency Influences the Hemodynamic Response in Patients with Disorders of Consciousness. Neurosci. Bull. 2018;34:659–667. doi: 10.1007/s12264-018-0252-4.
    1. Nambu A., Tokuno H., Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res. 2002;43:111–117. doi: 10.1016/S0168-0102(02)00027-5.
    1. Nambu A. A new approach to understand the pathophysiology of Parkinson’s disease. J. Neurol. 2005;252(Suppl. 4):IV1–IV4. doi: 10.1007/s00415-005-4002-y.
    1. Canolty R.T., Edwards E., Dalal S.S., Soltani M., Nagarajan S.S., Kirsch H.E., Berger M.S., Barbaro N.M., Knight R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628. doi: 10.1126/science.1128115.
    1. Liu C.C., Chien J.H., Kim J.H., Chuang Y.F., Cheng D.T., Anderson W.S., Lenz F.A. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs. Neuroscience. 2015;303:412–421. doi: 10.1016/j.neuroscience.2015.07.010.
    1. Voloh B., Valiante T.A., Everling S., Womelsdorf T. Theta-gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts. Proc. Natl. Acad. Sci. USA. 2015;112:8457–8462. doi: 10.1073/pnas.1500438112.
    1. De Ridder D., van der Loo E., Van der Kelen K., Menovsky T., Van de Heyning P., Moller A. Theta, alpha and beta burst transcranial magnetic stimulation: Brain modulation in tinnitus. Int. J. Med. Sci. 2007;4:237–241. doi: 10.7150/ijms.4.237.
    1. Llinas R.R., Ribary U., Jeanmonod D., Kronberg E., Mitra P.P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA. 1999;96:15222–15227. doi: 10.1073/pnas.96.26.15222.
    1. Von Stein A., Sarnthein J. Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 2000;38:301–313. doi: 10.1016/S0167-8760(00)00172-0.
    1. Ding X., Mountain D.J., Subramanian V., Singh K., Williams C.A. The effect of high cervical spinal cord stimulation on the expression of SP, NK-1 and TRPV1 mRNAs during cardiac ischemia in rat. Neurosci. Lett. 2007;424:139–144. doi: 10.1016/j.neulet.2007.07.040.
    1. Simpson R.K., Jr., Robertson C.S., Goodman J.C., Halter J.A. Recovery of amino acid neurotransmitters from the spinal cord during posterior epidural stimulation: A preliminary study. J. Am. Paraplegia Soc. 1991;14:3–8. doi: 10.1080/01952307.1991.11735828.
    1. Ultenius C., Song Z., Lin P., Meyerson B.A., Linderoth B. Spinal GABAergic mechanisms in the effects of spinal cord stimulation in a rodent model of neuropathic pain: Is GABA synthesis involved? Neuromodulation. 2013;16:114–120. doi: 10.1111/ner.12007.

Source: PubMed

3
Se inscrever