Myorelaxant Effect of Transdermal Cannabidiol Application in Patients with TMD: A Randomized, Double-Blind Trial

Aleksandra Nitecka-Buchta, Anna Nowak-Wachol, Kacper Wachol, Karolina Walczyńska-Dragon, Paweł Olczyk, Olgierd Batoryna, Wojciech Kempa, Stefan Baron, Aleksandra Nitecka-Buchta, Anna Nowak-Wachol, Kacper Wachol, Karolina Walczyńska-Dragon, Paweł Olczyk, Olgierd Batoryna, Wojciech Kempa, Stefan Baron

Abstract

(1) Background: The healing properties of cannabidiol (CBD) have been known for centuries. In this study, we aimed to evaluate the efficiency of the myorelaxant effect of CBD after the transdermal application in patients with myofascial pain. (2) Methods: The Polish version of the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD Ia and Ib) was used. A total of 60 patients were enrolled in the study and were randomly divided into two groups: Group1 and Group2. The average age in Group1 was 23.2 years (SD) = 1.6 years) and in Group2, it was 22.6 years (SD = 1.86). This was a parallel and double-blind trial. Group1 received CBD formulation, whereas Group2 received placebo formulation for topical use. The masseter muscle activity was measured on days 0 and 14, with surface electromyography (sEMG) (Neurobit Optima 4, Neurobit System, Gdynia, Poland). Pain intensity in VAS (Visual Analogue Scale) was measured on days 0 and 14. (3) Results: in Group1, the sEMG masseter activity significantly decreased (11% in the right and 12.6% in the left masseter muscles). In Group2, the sEMG masseter activity was recorded as 0.23% in the right and 3.3% in the left masseter muscles. Pain intensity in VAS scale was significantly decreased in Group1: 70.2% compared to Group2: 9.81% reduction. Patients were asked to apply formulation twice a day for a period of 14 days. (4) Conclusion: The application of CBD formulation over masseter muscle reduced the activity of masseter muscles and improved the condition of masticatory muscles in patients with myofascial pain.

Keywords: CBD; EMG; TMD; bruxism; cannabidiol; masseter muscle; myofascial Pain.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
2D ∆9-tetrahydrocannabinol structure and cannabidiol structure.
Figure 2
Figure 2
Flow chart of the two arms consolidated standards of reporting trials (CONSORT)-randomized study.
Figure 3
Figure 3
Distribution of gender in experimental and control groups.
Figure 4
Figure 4
Normalized surface electromyographic (sEMG) mean values of masseter muscle activity at rest position in Group1 and Group2; on Day 0 (I) and on follow-up visit on Day 14 (II) of the therapy; on left (L) and right (R) masseter muscle.
Figure 5
Figure 5
Pain intensity changes in VAS scale in Group1 and Group2 on Day0 (I) and on Day 14 (II) of the therapy.

References

    1. Smardz J., Martynowicz H., Wojakowska A., Michalek-Zrabkowska M., Mazur G., Więckiewicz M. Correlation between Sleep Bruxism, Stress, and Depression-A Polysomnographic Study. J. Clin. Med. 2019;8:1344. doi: 10.3390/jcm8091344.
    1. Lobbezoo F., Ahlberg J., Raphael K.G., Wetselaar P., Glaros A.G., Kato T., Santiago V., Winocur E., de Laat A., de Leeuw R., et al. International consensus on the assessment of bruxism: Report of a work in progress. J. Oral. Rehabil. 2018;45:837–844. doi: 10.1111/joor.12663.
    1. Machado E., Dal-Fabbro C., Cunali P.A., Kaizer O.B. Prevalence of sleep bruxism in children: A systematic review. Dental. Press J. Orthod. 2014;19:54–61. doi: 10.1590/2176-9451.19.6.054-061.oar.
    1. Touitou E., Fabin B., Dany S., Almog S. Transdermal delivery of tetrahydrocannabinol. Int. J. Pharm. 1998;43:9–15. doi: 10.1016/0378-5173(88)90052-X.
    1. Laursen L. Botany: The cultivation of weed. Nature. 2015;525:4–5. doi: 10.1038/525S4a.
    1. Pellati F., Borgonetti S., Brighenti V., Biagi E., Benvenuti S., Corsi L. Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. Biomed. Res. Int. 2018 doi: 10.1155/2018/1691428.
    1. Turner S.E., Williams C.M., Iversen L., Whalley B.J. Molecular Pharmacology of Phytocannabinoids. Prog. Chem. Org. Nat. Prod. 2017;103:61–101.
    1. ElSohly M.A., Radwan M.M., Gul W., Chandra S., Galal A. Phytochemistry of Cannabis sativa L. Prog. Chem. Org. Nat. Prod. 2017;103:1–36.
    1. Landa L., Jurica J., Sliva J., Pechackova M., Demlova R. Medical cannabis in the treatment of cancer pain and spastic conditions and options of drug delivery in clinical practice. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2018 doi: 10.5507/bp.2018.007.
    1. Mechoulam R., Hanus L. Cannabidiol: An overview of some chemical and pharmacological aspects. Part I: Chemical aspects. Chem. Phys. Lipids. 2002;121:35–43. doi: 10.1016/S0009-3084(02)00144-5.
    1. Baron E.P., Lucas P., Eades J., Hogue O. Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J. Headache Pain. 2018 doi: 10.1186/s10194-018-0862-2.
    1. Akopian A.N., Ruparel N.B., Jeske N.A., Patwardhan A., Hargreaves K.M. Role of ionotropic cannabinoid receptors in peripheral antipain and antihyperalgesia. Trends. Pharmacol. Sci. 2009;30:79–84. doi: 10.1016/j.tips.2008.10.008.
    1. Grlić L. A comparative study on some chemical and biological characteristics of various samples of cannabis resin. Bull. Narcotics. 1976;14:37–46.
    1. Ben Amar M. Cannabinoids in medicine: A review of their therapeutic potential. J. Ethnopharmacol. 2006;105:1–25. doi: 10.1016/j.jep.2006.02.001.
    1. Izzo A., Borrelli F., Capasso R., Di Marzo V., Mechoulam R. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 2009;30:515–527. doi: 10.1016/j.tips.2009.07.006.
    1. Maione S., Costa B., Di Marzo V. Endocannabinoids: A unique opportunity to develop multitarget analgesics. Pain. 2013;154:S87–S93. doi: 10.1016/j.pain.2013.03.023.
    1. Pertwee R.G. Pharmacological actions of cannabinoids. Handbook of experimental Pharmacology. Cannabinoids. 2005 doi: 10.1007/3-540-26573-2_1.
    1. Philpott H.T., O Brien M., McDougall J.J. Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain. 2017;158:2442–2451. doi: 10.1097/j.pain.0000000000001052.
    1. National Academies of Sciences, Engineering and Medicine . The Health Effects of Cannabis and Cannabinoids: Current State of Evidence and Recommendations for Research. The National Academies Press; Washington, DC, USA: 2017.
    1. Koppel B.S., Brust J.C., Fife T., Bronstein J., Youssof S., Gronseth G., Gloss D. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2014;29:1556–1563. doi: 10.1212/WNL.0000000000000363.
    1. Müller C.E. Progress in cannabis research from a pharmaceutical chemist’s point of view. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2019;62:818–824.
    1. Wong H., Hossain S., Cairns B.E. Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation. Eur. J. Pain. 2017;21:1732–1742. doi: 10.1002/ejp.1085.
    1. King K.M., Myers A.M., Soroka-Monzo A.J., Tuma R.F., Tallarida R.J., Walker E.A., Ward S.J. Single and combined effects of Δ9-tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br. J. Pharmacol. 2017;174:2832–2841. doi: 10.1111/bph.13887.
    1. Pertwee R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008;153:199–215. doi: 10.1038/sj.bjp.0707442.
    1. Wong H., Cairns B.E. Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain. Arch. Oral. Biol. 2019;104:33–39. doi: 10.1016/j.archoralbio.2019.05.028.
    1. Mechoulam R. Cannabis as Therapeutic Agent. CRC Press; Boca Raton, FL, USA: 1986. The Pharmacohistory of Cannabis Sativa.
    1. Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 2003;42:327–360. doi: 10.2165/00003088-200342040-00003.
    1. Alkabbani W., Marrie R.A., Bugden S., Alessi-Severini S., Bolton J.M., Daeninck P., Leong C. Persistence of use of prescribed cannabinoid medicines in Manitoba, Canada: A population-based cohort study. Addiction. 2019;114:1791–1799. doi: 10.1111/add.14719.
    1. Zou S., Kumar U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018;19:833. doi: 10.3390/ijms19030833.
    1. Osiewicz M.A., Lobbezoo F., Loster B.W., Wilkosz M., Naeije M., Ohrbach R. Badawcze Kryteria Diagnostyczne Zaburzeń Czynnościowych Układu Ruchowego Narządu Żucia BKD/ZCURNŻ—Polska wersja dwuosiowego systemu diagnostycznego ZCURNŻ. Protet. Stomatol. 2010;60:433–444.
    1. Halaki M., Ginn K. Computational Intelligence in Electromyography Analysis—A Perspective on Current Applications and Future Challenges. IntechOpen; Rijeka, Croatia: 2012. Normalization of EMG Signals: To Normalize or Not to Normalize and What to Normalize to?
    1. Zuccolotto M.C., Vitti M., Nóbilo K.A., Regalo S.C., Siéssere S., Bataglion C. Electromyographic evaluation of masseter and anterior temporalis muscles in rest position of edentulous patients with temporomandibular disorders, before and after using complete dentures with sliding plates. Gerodontology. 2007;24:105–110. doi: 10.1111/j.1741-2358.2007.00152.x.
    1. Crawford S.R., Burden A.M., Yates J.M., Zioupos P., Winwood K. Can masticatory electromyography be normalized to submaximal bite force? J. Oral. Rehabil. 2015;42:323–330. doi: 10.1111/joor.12268.
    1. De Rossi M., Palinkas M., Lucas B., Santos C., Semprini M., Oliveira L., Regalo I., Bersani E., Migliorança R., Siéssere S., et al. Masticatory muscle activity evaluation by electromyography in subjects with zygomatic implants. Med. Oral. Patol. Oral. Cir. Bucal. 2017;22:392–397. doi: 10.4317/medoral.21659.
    1. Hammell D.C., Zhang L.P., Ma F., Abshire S.M., McIlwrath S.L., Stinchcomb A.L., Westlund K.N. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur. J. Pain. 2016;20:936–948. doi: 10.1002/ejp.818.
    1. Lucas C.J., Galettis P., Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018;84:2477–2482. doi: 10.1111/bcp.13710.
    1. Coffey R.G., Yamamoto Y., Snella E., Pross S. Tetrahydrocannabinol inhibition of macrophage nitric oxide production. Biochem. Pharmacol. 1996;52:743–751. doi: 10.1016/0006-2952(96)00356-5.
    1. Paudel K.S., Milewski M., Swadley C.L., Brogden N.K., Ghosh P., Stinchcomb A.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv. 2010;1:109–131. doi: 10.4155/tde.10.16.
    1. Lodzki M., Godin B., Rakou L., Mechoulam R., Gallily R., Touitou E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release. 2003;93:377–387. doi: 10.1016/j.jconrel.2003.09.001.
    1. Bruni N., Pepa C.D., Oliaro-Bosso S., Pessione E., Gastaldi D., Dosio F. Cannabinoid Delivery Systems for Pain and Inflammation Treatment. Molecules. 2018;23:2478. doi: 10.3390/molecules23102478.
    1. Stinchcomb A.L., Valiveti S., Hammell D.C., Ramsey D.R. Human skin permeation of Delta8-tetrahydrocannabinol, cannabidiol and cannabinol. J. Pharm. Pharmacol. 2004;56:291–297. doi: 10.1211/0022357022791.
    1. Castroflorio T., Icardi K., Torsello F., Deregibus A., Debernardi C., Bracco P. Reproducibility of surface EMG in the human masseter and anterior temporalis muscle areas. Cranio. 2005;23:130–137. doi: 10.1179/crn.2005.018.
    1. Więckiewicz M., Zietek M., Nowakowska D., Wieckiewicz W. Comparison of selected kinematic facebows applied to mandibular tracing. Biomed. Res. Int. 2014 doi: 10.1155/2014/818694.

Source: PubMed

3
Se inscrever