Sulfur amino acid restriction, energy metabolism and obesity: a study protocol of an 8-week randomized controlled dietary intervention with whole foods and amino acid supplements

Emma Stolt, Thomas Olsen, Amany Elshorbagy, Viktor Kožich, Marleen van Greevenbroek, Bente Øvrebø, Magne Thoresen, Helga Refsum, Kjetil Retterstøl, Kathrine J Vinknes, Emma Stolt, Thomas Olsen, Amany Elshorbagy, Viktor Kožich, Marleen van Greevenbroek, Bente Øvrebø, Magne Thoresen, Helga Refsum, Kjetil Retterstøl, Kathrine J Vinknes

Abstract

Background: Dietary sulfur amino acid (SAA) restriction is an established animal model for increasing lifespan and improving metabolic health. Data from human studies are limited. In the study outlined in this protocol, we will evaluate if dietary SAA restriction can reduce body weight and improve resting energy expenditure (REE) and parameters related to metabolic health.

Method/design: Men and women (calculated sample size = 60), aged 18-45 years, with body mass index of 27-35 kg/m2 will be included in a double-blind 8-week dietary intervention study. The participants will be randomized in a 1:1 manner to a diet with either low or high SAA. Both groups will receive an equal base diet consisting of low-SAA plant-based whole foods and an amino acid supplement free of SAA. Contrasting SAA contents will be achieved using capsules with or without methionine and cysteine (SAAhigh, total diet SAA ~ 50-60 mg/kg body weight/day; SAAlow, total diet SAA ~ 15-25 mg/kg body weight/day). The primary outcome is body weight change. Data and material collection will also include body composition (dual X-ray absorptiometry), resting energy expenditure (whole-room indirect calorimetry) and samples of blood, urine, feces and adipose tissue at baseline, at 4 weeks and at study completion. Measures will be taken to promote and monitor diet adherence. Data will be analyzed using linear mixed model regression to account for the repeated measures design and within-subject correlation.

Discussion: The strength of this study is the randomized double-blind design. A limitation is the restrictive nature of the diet which may lead to poor compliance. If this study reveals a beneficial effect of the SAAlow diet on body composition and metabolic health, it opens up for new strategies for prevention and treatment of overweight, obesity and its associated disorders. Trial registration ClinicalTrials.gov: NCT04701346, Registration date: January 8th, 2021.

Keywords: Adipose tissue; Cysteine restriction; Dietary intervention; Gene expression; Metabolic health; Methionine restriction; Obesity; Plasma biomarkers; Sulfur amino acids; Translational research.

Conflict of interest statement

The authors declare that they and funder have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of the study. SAA sulfur amino acids

References

    1. Elshorbagy A, Jerneren F, Basta M, Basta C, Turner C, Khaled M, et al. Amino acid changes during transition to a vegan diet supplemented with fish in healthy humans. Eur J Nutr. 2016.
    1. Dong Z, Sinha R, Richie JP., Jr Disease prevention and delayed aging by dietary sulfur amino acid restriction: translational implications. Ann N Y Acad Sci. 2018;1418(1):44–55. doi: 10.1111/nyas.13584.
    1. Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J Nutr. 2006;136(6):1636S–1640S. doi: 10.1093/jn/136.6.1636S.
    1. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30(1):42–59. doi: 10.1016/j.mam.2008.05.005.
    1. Sen U, Mishra PK, Tyagi N, Tyagi SC. Homocysteine to hydrogen sulfide or hypertension. Cell Biochem Biophys. 2010;57(2–3):49–58. doi: 10.1007/s12013-010-9079-y.
    1. Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab (Lond) 2007;4:24. doi: 10.1186/1743-7075-4-24.
    1. Dong Z, Sinha R, Richie JP., Jr Disease prevention and delayed aging by dietary sulfur amino acid restriction: translational implications. Ann N Y Acad Sci. 2018;1418(1):44–55. doi: 10.1111/nyas.13584.
    1. Orentreich N, Matias JR, DeFelice A, Zimmerman JA. Low methionine ingestion by rats extends life span. J Nutr. 1993;123(2):269–274.
    1. Stone KP, Wanders D, Orgeron M, Cortez CC, Gettys TW. Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes. 2014;63(11):3721–3733. doi: 10.2337/db14-0464.
    1. Wanders D, Forney LA, Stone KP, Hasek BE, Johnson WD, Gettys TW. The components of age-dependent effects of dietary methionine restriction on energy balance in rats. Obesity (Silver Spring) 2018;26(4):740–746. doi: 10.1002/oby.22146.
    1. Malloy VL, Perrone CE, Mattocks DA, Ables GP, Caliendo NS, Orentreich DS, et al. Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice. Metab Clin Exp. 2013;62(11):1651–1661. doi: 10.1016/j.metabol.2013.06.012.
    1. Hasek BE, Boudreau A, Shin J, Feng D, Hulver M, Van NT, et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes. 2013;62(10):3362–3372. doi: 10.2337/db13-0501.
    1. Ables GP, Johnson JE. Pleiotropic responses to methionine restriction. Exp Gerontol. 2017;94:83–88. doi: 10.1016/j.exger.2017.01.012.
    1. Elshorbagy AK. Body composition in gene knockouts of sulfur amino acid-metabolizing enzymes. Mamm Genome. 2014;25:455–463. doi: 10.1007/s00335-014-9527-x.
    1. Yang Y, Wang Y, Sun J, Zhang J, Guo H, Shi Y, et al. Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production. Food Funct. 2019;10(1):61–77. doi: 10.1039/C8FO01629A.
    1. Elshorbagy AK, Smith AD, Kozich V, Refsum H. Cysteine and obesity. Obesity (Silver Spring) 2012;20(3):473–481. doi: 10.1038/oby.2011.93.
    1. Elshorbagy AK, Kozich V, Smith AD, Refsum H. Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Curr Opin Clin Nutr Metab Care. 2012;15(1):49–57. doi: 10.1097/MCO.0b013e32834d199f.
    1. Plaisance EP, Greenway FL, Boudreau A, Hill KL, Johnson WD, Krajcik RA, et al. Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. J Clin Endocrinol Metab. 2011;96(5):E836–E840. doi: 10.1210/jc.2010-2493.
    1. Olsen T, Øvrebø B, Haj-Yasein N, Lee S, Svendsen K, Hjorth M, et al. Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: a double-blind randomized controlled pilot study. J Transl Med. 2020;18(1):122. doi: 10.1186/s12967-020-02288-x.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med. 2010;7(3):e1000251. doi: 10.1371/journal.pmed.1000251.
    1. Lang CA, Naryshkin S, Schneider DL, Mills BJ, Lindeman RD. Low blood glutathione levels in healthy aging adults. J Lab Clin Med. 1992;120(5):720–725.
    1. Waist circumference and waist-hip ratio: report of a WHO expert consultation. 2011.
    1. El-Khairy L, Ueland PM, Nygard O, Refsum H, Vollset SE. Lifestyle and cardiovascular disease risk factors as determinants of total cysteine in plasma: the Hordaland Homocysteine Study. Am J Clin Nutr. 1999;70(6):1016–1024. doi: 10.1093/ajcn/70.6.1016.
    1. Nordic Nutrition Recommendations . Integrating nutrition and physical activity. Copenhagen: Nordic Council of Ministers; 2012. p. 2012.
    1. Pawlak R, Parrott SJ, Raj S, Cullum-Dugan D, Lucus D. How prevalent is vitamin B(12) deficiency among vegetarians? Nutr Rev. 2013;71(2):110–117. doi: 10.1111/nure.12001.
    1. Consultation JWFUE. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007(935):1–265, back cover.
    1. Rising R, Whyte K, Albu J, Pi-Sunyer X. Evaluation of a new whole room indirect calorimeter specific for measurement of resting metabolic rate. Nutr Metab (Lond) 2015;12:46. doi: 10.1186/s12986-015-0043-0.
    1. Antoniades C, Shirodaria C, Leeson P, Baarholm OA, Van-Assche T, Cunnington C, et al. MTHFR 677 C>T Polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation. 2009;119(18):2507–2515. doi: 10.1161/CIRCULATIONAHA.108.808675.
    1. Kožich V, Ditrói T, Sokolová J, Křížková M, Krijt J, Ješina P, et al. Metabolism of sulfur compounds in homocystinurias. Br J Pharmacol. 2019;176(4):594–606. doi: 10.1111/bph.14523.
    1. Vinknes KJ, Elshorbagy AK, Nurk E, Drevon CA, Gjesdal CG, Tell GS, et al. Plasma stearoyl-CoA desaturase indices: association with lifestyle, diet, and body composition. Obesity (Silver Spring) 2013;21(3):E294–302. doi: 10.1002/oby.20011.
    1. Schipper HS, de Jager W, van Dijk ME, Meerding J, Zelissen PM, Adan RA, et al. A multiplex immunoassay for human adipokine profiling. Clin Chem. 2010;56(8):1320–1328. doi: 10.1373/clinchem.2010.146118.
    1. Loo BM, Marniemi J, Jula A. Evaluation of multiplex immunoassays, used for determination of adiponectin, resistin, leptin, and ghrelin from human blood samples, in comparison to ELISA assays. Scand J Clin Lab Invest. 2011;71(3):221–226. doi: 10.3109/00365513.2011.554996.
    1. Wong VWS, Adams LA, de Lédinghen V, Wong GLH, Sookoian S. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15(8):461–478. doi: 10.1038/s41575-018-0014-9.
    1. Mariotti F, Tome D, Mirand PP. Converting nitrogen into protein—beyond 625 and Jones' factors. Crit Rev Food Sci Nutr. 2008;48(2):177–184. doi: 10.1080/10408390701279749.
    1. Kimberly AE, Roberts MG. A method for the direct determination of organic nitrogen by the Kjeldahl process. Public Health Pap Rep. 1905;31(Pt 2):109–122.
    1. Medin AC, Carlsen MH, Hambly C, Speakman JR, Strohmaier S, Andersen LF. The validity of a web-based FFQ assessed by doubly labelled water and multiple 24-h recalls. Br J Nutr. 2017;118(12):1106–1117. doi: 10.1017/S0007114517003178.
    1. Mishra S, Xu J, Agarwal U, Gonzales J, Levin S, Barnard ND. A multicenter randomized controlled trial of a plant-based nutrition program to reduce body weight and cardiovascular risk in the corporate setting: the GEICO study. Eur J Clin Nutr. 2013;67(7):718–724. doi: 10.1038/ejcn.2013.92.
    1. Kreidler SM, Muller KE, Grunwald GK, Ringham BM, Coker-Dukowitz ZT, Sakhadeo UR, et al. GLIMMPSE: online power computation for linear models with and without a baseline covariate. J Stat Softw. 2013;54(10):i10. doi: 10.18637/jss.v054.i10.
    1. White IR, Horton NJ, Carpenter J, Pocock SJ. Strategy for intention to treat analysis in randomised trials with missing outcome data. BMJ. 2011;342:d40. doi: 10.1136/bmj.d40.
    1. Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–1360. doi: 10.1056/NEJMsr1203730.
    1. Olsen T, Øvrebø B, Turner C, Bastani N, Refsum H, Vinknes K. Combining dietary sulfur amino acid restriction with polyunsaturated fatty acid intake in humans: a randomized controlled pilot trial. Nutrients. 2018;10(12):1822. doi: 10.3390/nu10121822.
    1. Elshorbagy AK, Graham I, Refsum H. Body mass index determines the response of plasma sulfur amino acids to methionine loading. Biochimie. 2020;173:107–113. doi: 10.1016/j.biochi.2020.03.001.
    1. Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. 2011;34(1):17–32. doi: 10.1007/s10545-009-9006-9.

Source: PubMed

3
Se inscrever