Laser spectroscopy for breath analysis: towards clinical implementation

Ben Henderson, Amir Khodabakhsh, Markus Metsälä, Irène Ventrillard, Florian M Schmidt, Daniele Romanini, Grant A D Ritchie, Sacco Te Lintel Hekkert, Raphaël Briot, Terence Risby, Nandor Marczin, Frans J M Harren, Simona M Cristescu, Ben Henderson, Amir Khodabakhsh, Markus Metsälä, Irène Ventrillard, Florian M Schmidt, Daniele Romanini, Grant A D Ritchie, Sacco Te Lintel Hekkert, Raphaël Briot, Terence Risby, Nandor Marczin, Frans J M Harren, Simona M Cristescu

Abstract

Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.

Figures

Fig. 1
Fig. 1
a Schematic drawing of a typical mid-infrared TDLAS setup employing an ICL, a circular, low-volume MPC, and WMS (with permission from [39]). LDC: laser diode controller, LiA: lock-in amplifier, FGen: function generator, PT: pressure transducer, PD: photodetector. b Real-time, exhalation profiles (breath cycles) of CO and CO2 measured with an EC-QCL, and a CO2 profile recorded with NDIR spectroscopy (capnography) (with permission from [36]). The three exhalation phases (dead space/airways, transition region, and alveolar region) are indicated
Fig. 2
Fig. 2
a Schematic of the multichannel absorption spectrometer and pneumotachograph within the MFS measurement head. The bi-directional gas path (blue) is shown along with the two mesh screens (gray), across which pressure drop is measured. Radiation used for probing O2 is injected into an optical cavity constructed from a pair of highly reflective mirrors (red) and collected by a photodiode (PD 1) positioned along the optical axis (green). Radiation probing CO2 and H2O vapor is launched into the v-path (yellow), reflected by a concave mirror, and collected by the photodiode (PD 2). The physical length of the optical cavity is commensurate with the diameter of a standard medical ventilation tube. b, c Dry gas fractions of N2 (purple), O2 (green), and CO2 (red) measured in real time (every 10 ms) as a participant breathes through the measurement head. The dry fraction of N2 is determined by the subtracting the dry fractions of O2 and CO2 from unity. b Data from an air breathing phase. c Data from the early stage of a nitrogen washout procedure
Fig. 3
Fig. 3
Contour plots for the bivariate log normal distributions for (standardized) compliance and conductance for three participant groups: young, old, and COPD. Contour intervals are values for the probability density function. The increased lung inhomogeneity for COPD cohort is readily apparent from the widths of the distribution. Further details can be found in Mountain et al. [44]
Fig. 4
Fig. 4
a CO measurements performed by OF-CEAS on an ex vivo pig lung during slow warming after cold ischemia. The response time allows to monitor both inspiration and expiration phases imposed by the ventilator (respiratory rate is 12 per min). The baseline corresponds to CO concentration in the medical gas supply. b Lungs were progressively ventilated and rewarmed by a perfusion solution
Fig. 5
Fig. 5
Laser-based photoacoustic detector (ETD-300, Sensor Sense) in the cardiothoracic surgery department at Harefield hospital, UK (photo by S. Cristescu)
Fig. 6
Fig. 6
Intraoperative real-time monitoring of ethylene measured by LPAS in patients undergoing off-pump coronary artery bypass surgery. a Example of continuous monitoring during of the entire operation. At t = 0 h the patient was connected to the sampling line; DT = diathermy electrocautery with high-frequency electric currents (adapted from [67]). b An example of a grafting procedure. The high-resolution peaks are associated with ethylene induced by lipid peroxidation during the reperfusion events
Fig. 7
Fig. 7
A scheme of the fiber-coupled off-beam QEPAS sensor for CO2 isotopic ratio determination [73]. L1, AR-coated aspheric lens; L2, optical focuser; QTF, quartz tuning fork; mR, micro-resonator; DAQ, data acquisition system

References

    1. R. Lewicki, A.A. Kosterev, D.M. Thomazy, T.H. Risby, S. Solga, T.B. Schwartz, F.K. Tittel, Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor. in SPIE OPTO(SPIE2011), p. 7
    1. Cristescu SM, Mandon J, Harren FJM, Merilainen P, Hogman M. Methods of NO detection in exhaled breath. J. Breath Res. 2013;7:11.
    1. Amann A, Costello B, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014;8:17.
    1. Costello BD, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D, Ratcliffe NM. A review of the volatiles from the healthy human body. J. Breath Res. 2014;8:29.
    1. Pleil D, Stiegel MA, Risby TH. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J. Breath Res. 2013;7:017107.
    1. Stönner C, Williams J. Goals change crowd air chemistry. Nature. 2016;535:355.
    1. Turner MA, Bandelow S, Edwards L, Patel P, Martin HJ, Wilson ID, Thomas CLP. The effect of a paced auditory serial addition test (PASAT) intervention on the profile of volatile organic compounds in human breath: a pilot study. J. Breath Res. 2013;7:11.
    1. M.K. Paschke Kelly, Clinical applications of breath testing. F1000 Medicine Reports 2 (2010)
    1. Pauling L, Robinson AB, Teranish R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. U. S. A. 1971;68:2374.
    1. A. Amann, W. Miekisch, J. Schubert, B. Buszewski, T. Ligor, T. Jezierski, J. Pleil, T. Risby, Analysis of exhaled breath for disease detection. in Annual Review of Analytical Chemistry, Vol 7, ed. by R.G. Cooks, J.E. Pemberton, (Annual Reviews, 2014), pp. 455–482
    1. Basanta M, Ibrahim B, Dockry R, Douce D, Morris M, Singh D, Woodcock A, Fowler SJ. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study. Respir. Res. 2012;13:9.
    1. Miekisch W, Herbig J, Schubert JK. Data interpretation in breath biomarker research: pitfalls and directions. J. Breath Res. 2012;6:10.
    1. Phillips M, Cataneo RN, Chaturvedi A, Kaplan PD, Libardoni M, Mundada M, Patel U, Zhang X. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Plos ONE. 2013;8:8.
    1. Schnabel R, Fijten R, Smolinska A, Dallinga J, Boumans ML, Stobberingh E, Boots A, Roekaerts P, Bergmans D, van Schooten FJ. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 2015;5:10.
    1. del Rio RF, O’Hara ME, Holt A, Pemberton P, Shah T, Whitehouse T, Mayhew CA. Volatile biomarkers in breath associated with liver cirrhosis—comparisons of pre-and post-liver transplant breath samples. Ebiomedicine. 2015;2:1243–1250.
    1. Dryahina K, Smith D, Bortlik M, Machkova N, Lukas M, Spanel P. Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn’s disease and ulcerative colitis. J. Breath Res. 2018;12:9.
    1. Mochalski P, Wiesenhofer H, Allers M, Zimmermann S, Güntner AT, Pineau NJ, Lederer W, Agapiou A, Mayhew CA, Ruzsanyi V. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS) J. Chromatogr. B. 2018;1076:29–34.
    1. Gaugg MT, Gomez DG, Barrios-Collado C, Vidal-de-Miguel G, Kohler M, Zenobi R, Sinues PML. Expanding metabolite coverage of real-time breath analysis by coupling a universal secondary electrospray ionization source and high resolution mass spectrometry-a pilot study on tobacco smokers. J. Breath Res. 2016;10:9.
    1. Kibion, Kibion Dynamic.
    1. Bedfont, GastroCH4ECK.
    1. LaserBreath, LaserBreath001.
    1. Lourenço C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites. 2014;4:465.
    1. Risby TH, Tittel FK. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt. Eng. 2010;49:14.
    1. Stacewicz T, Bielecki Z, Wojtas J, Magryta P, Mikolajczyk J, Szabra D. Detection of disease markers in human breath with laser absorption spectroscopy. Opto-Electron. Rev. 2016;24:82–94.
    1. Wang CJ, Sahay P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors. 2009;9:8230–8262.
    1. Wojtas J, Bielecki Z, Stacewicz T, Mikolajczyk J, Nowakowski M. Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron. Rev. 2012;20:26–39.
    1. Modak AS. Barriers to overcome for transition of breath tests from research to routine clinical practice. J. Breath Res. 2011;5:5.
    1. Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993;6:1368–1370.
    1. Maniscalco M, Vitale C, Vatrella A, Molino A, Bianco A, Mazzarella G. Fractional exhaled nitric oxide-measuring devices: technology update. Med. Devices (Auckland, N.Z.) 2016;9:151–160.
    1. Gisbert JP, Pajares JM. 13C-urea breath test in the diagnosis of Helicobacter pylori infection—a critical review. Aliment. Pharmacol. Ther. 2004;20:1001–1017.
    1. Modak AS. Point-of-care companion diagnostic tests for personalizing psychiatric medications: fulfilling an unmet clinical need. J. Breath Res. 2018;12:10.
    1. Arslanov DD, Castro MPP, Creemers NA, Neerincx AH, Spunei M, Mandon J, Cristescu SM, Merkus P, Harren FJM. Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications. J. Biomed. Opt. 2013;18:8.
    1. Hannemann M, Antufjew A, Borgmann K, Hempel F, Ittermann T, Welzel S, Weltmann KD, Volzke H, Ropcke J. Influence of age and sex in exhaled breath samples investigated by means of infrared laser absorption spectroscopy. J. Breath Res. 2011;5:9.
    1. Shorter JH, Nelson DD, McManus JB, Zahniser MS, Sama SR, Milton DK. Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy. J. Breath Res. 2011;5:12.
    1. Ciaffoni L, O’Neill DP, Couper JH, Ritchie GA, Hancock G, Robbins PA. In-airway molecular flow sensing: a new technology for continuous, noninvasive monitoring of oxygen consumption in critical care. Sci. Adv. 2016;2:e1600560.
    1. Ghorbani R, Schmidt FM. Real-time breath gas analysis of CO and CO2 using an EC-QCL. Appl. Phys. B-Lasers Opt. 2017;123:11.
    1. Bartlome R, Sigrist MW. Laser-based human breath analysis: D/H isotope ratio increase following heavy water intake. Opt. Lett. 2009;34:866–868.
    1. Pakmanesh N, Cristescu SM, Ghorbanzadeh A, Harren FJM, Mandon J. Quantum cascade laser-based sensors for the detection of exhaled carbon monoxide. Appl. Phys. B-Lasers Opt. 2016;122:9.
    1. Ghorbani R, Schmidt FM. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes. Opt. Express. 2017;25:12743–12752.
    1. Patterson CS, McMillan LC, Longbottom C, Gibson GM, Padgett MJ, Skeldon KD. Portable optical spectroscopy for accurate analysis of ethane in exhaled breath. Meas. Sci. Technol. 2007;18:1459–1464.
    1. Ciaffoni L, Couper J, Hancock G, Peverall R, Robbins PA, Ritchie GAD. RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy. Opt. Express. 2014;22:17030–17038.
    1. Manfred KM, Kirkbride JMR, Ciaffoni L, Peverall R, Ritchie GAD. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation. Opt. Lett. 2014;39:6811–6814.
    1. O’Neill DP, Robbins PA. A mechanistic physicochemical model of carbon dioxide transport in blood. J. Appl. Physiol. 2017;122:283–295.
    1. J.E. Mountain, P. Santer, D.P. O’Neill, N.M.J. Smith, L. Ciaffoni, J.H. Couper, G.A.D. Ritchie, G. Hancock, J.P. Whiteley, P.A. Robbins, Potential for non-invasive assessment of lung inhomogeneity using highly precise, highly time-resolved, measurements of gas exchange J. Appl. Physiol. 0, jap.00745.02017 (2017)
    1. Morville J, Kassi S, Chenevier M, Romanini D. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B-Lasers Opt. 2005;80:1027–1038.
    1. Ventrillard-Courtillot I, Gonthiez T, Clerici C, Romanini D. Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy. J. Biomed. Opt. 2009;14:5.
    1. Morville J, Romanini D, Kerstel E. Cavity enhanced absorption spectroscopy with optical feedback. In: Gagliardi G, Loock H-P, editors. Cavity-Enhanced Spectroscopy and Sensing. Berlin Heidelberg: Springer; 2014. pp. 163–209.
    1. R.Q. Iannone, D. Romanini, O. Cattani, H.A.J. Meijer, E.R.T. Kerstel, Water isotope ratio (δ2H and δ18O) measurements in atmospheric moisture using an optical feedback cavity enhanced absorption laser spectrometer. J. Geophys. Res. Atmos. 115, 1AA (2010)
    1. Ventrillard I, Xueref-Remy I, Schmidt M, Kwok CY, Fain X, Romanini D. Comparison of optical-feedback cavity-enhanced absorption spectroscopy and gas chromatography for ground-based and airborne measurements of atmospheric CO concentration. Atmos. Meas. Tech. 2017;10:1803–1812.
    1. Fain X, Chappellaz J, Rhodes RH, Stowasser C, Blunier T, McConnell JR, Brook EJ, Preunkert S, Legrand M, Debois T, Romanini D. High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: evidence for in situ production. Clim. Past. 2014;10:987–1000.
    1. Hamilton DJ, Orr-Ewing AJ. A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air. Appl. Phys. B-Lasers Opt. 2011;102:879–890.
    1. Maisons G, Carbajo PG, Carras M, Romanini D. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. Opt. Lett. 2010;35:3607–3609.
    1. Manfred KM, Hunter KM, Ciaffoni L, Ritchie GAD. ICL-based OF-CEAS: a sensitive tool for analytical chemistry. Anal. Chem. 2017;89:902–909.
    1. Manfred KM, Ritchie GAD, Lang N, Röpcke J, Van Helden JH. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser. Appl. Phys. Lett. 2015;106:221106.
    1. Richard L, Ventrillard I, Chau G, Jaulin K, Kerstel E, Romanini D. Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis. Appl. Phys. B-Lasers Opt. 2016;122:7.
    1. Ventrillard I, Gorrotxategi-Carbajo P, Romanini D. Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared. Appl. Phys. B-Lasers Opt. 2017;123:8.
    1. Cypel M, Yeung JC, Liu MY, Anraku M, Chen FS, Karolak W, Sato M, Laratta J, Azad S, Madonik M, Chow CW, Chaparro C, Hutcheon M, Singer LG, Slutsky AS, Yasufuku K, de Perrot M, Pierre AF, Waddell TK, Keshavjee S. Normothermic ex vivo lung perfusion in clinical lung transplantation. N. Engl. J. Med. 2011;364:1431–1440.
    1. Maignan M, Briot R, Romanini D, Gennai S, Hazane-Puch F, Brouta A, Debaty G, Ventrillard I. Real-time measurements of endogenous carbon monoxide production in isolated pig lungs. J. Biomed. Opt. 2014;19:7.
    1. Maignan M, Gennai S, Debaty G, Romanini D, Schmidt MH, Brenckmann V, Brouta A, Ventrillard I, Briot R. Exhaled carbon monoxide is correlated with ischemia reperfusion injuries during ex vivo lung perfusion in pigs. J. Breath Res. 2017;11:8.
    1. Marczin N, Riedel B, Gal J, Polak J, Yacoub M. Exhaled nitric oxide during lung transplantation. Lancet. 1997;350:1681–1682.
    1. Harren FJM, Mandon J, Cristescu SM. Photoacoustic spectroscopy in trace gas monitoring. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Hoboken: Wiley; 2012.
    1. Pleitez MA, Lieblein T, Bauer A, Hertzberg O, von Lilienfeld-Toal H, Mantele W. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Anal. Chem. 2013;85:1013–1020.
    1. Spagnolo V, Kosterev AA, Dong L, Lewicki R, Tittel FK. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl. Phys. B-Lasers Opt. 2010;100:125–130.
    1. Kneepkens CMF, Lepage G, Roy CC. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic. Biol. Med. 1994;17:127–160.
    1. Harren F, Berkelmans R, Kuiper K, te Lintel Hekkert S, Scheepers P, Dekhuijzen R, Hollander P, Parker D. On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin. Appl. Phys. Lett. 1999;74:1761–1763.
    1. Moeskops BWM, Steeghs MML, van Swam K, Cristescu SM, Scheepers PTJ, Harren FJM. Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo. Physiol. Meas. 2006;27:1187–1196.
    1. Cristescu SM, Kiss R, Hekkert ST, Dalby M, Harren FJM, Risby TH, Marczin N, Harefield BSI. Real-time monitoring of endogenous lipid peroxidation by exhaled ethylene in patients undergoing cardiac surgery. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014;307:L509–L515.
    1. R. Romano, S.M. Cristescu, T.H. Risby, N. Marczin, Lipid peroxidation in cardiac surgery: towards consensus on biomonitoring, diagnostic tools and therapeutic implementation J. Breath Res. 12 (2018)
    1. Neerincx AH, Linders YAM, Vermeulen L, Belderbos RA, Mandon J, van Mastrigt E, Pijnenburg MW, van Ingen J, Mouton JW, Kluijtmans LAJ, Wevers RA, Harren FJM, Cristescu SM, Merkus P. Hydrogen cyanide emission in the lung by Staphylococcus aureus. Eur. Respir. J. 2016;48:577–579.
    1. Neerincx AH, Mandon J, van Ingen J, Arslanov DD, Mouton JW, Harren FJ, Merkus PJ, Cristescu SM. Real-time monitoring of hydrogen cyanide (HCN) and ammonia (NH3) emitted by Pseudomonas aeruginosa. J. Breath Res. 2015;9:027102.
    1. Chen W, Roslund K, Fogarty CL, Pussinen PJ, Halonen L, Groop PH, Metsala M, Lehto M. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy. Sci. Rep. 2016;6:9.
    1. Kosterev AA, Tittel FK, Serebryakov DV, Malinovsky AL, Morozov IV. Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 2005;76:043105.
    1. Wang Z, Wang Q, Ching JYL, Wu JCY, Zhang GF, Ren W. A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser. Sens. Actuators B Chem. 2017;246:710–715.
    1. Waclawek JP, Moser H, Lendl B. Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide. Opt. Express. 2016;24:6559–6571.
    1. Spacek LA, Mudalel M, Tittel F, Risby TH, Solga SF. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults. J. Breath Res. 2015;9:7.
    1. Thorpe MJ, Balslev-Clausen D, Kirchner MS, Ye J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express. 2008;16:2387–2397.
    1. Duval S, Gauthier JC, Robichaud LR, Paradis P, Olivier M, Fortin V, Bernier M, Piche M, Vallee R. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm. Opt. Lett. 2016;41:5294–5297.
    1. Schliesser A, Picque N, Hansch TW. Mid-infrared frequency combs. Nat. Photonics. 2012;6:440–449.
    1. Yu MJ, Okawachi Y, Griffith AG, Lipson M, Gaeta AL. Microresonator-based high-resolution gas spectroscopy. Opt. Lett. 2017;42:4442–4445.
    1. Foltynowicz A, Maslowski P, Fleisher AJ, Bjork BJ, Ye J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B-Lasers Opt. 2013;110:163–175.
    1. Haakestad MW, Lamour TP, Leindecker N, Marandi A, Vodopyanov KL. Intracavity trace molecular detection with a broadband mid-IR frequency comb source. J. Opt. Soc. Am. B Opt. Phys. 2013;30:631–640.
    1. Cruz FC, Maser DL, Johnson T, Ycas G, Klose A, Giorgetta FR, Coddington I, Diddams SA. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express. 2015;23:26814–26824.
    1. Khodabakhsh A, Ramaiah-Badarla V, Rutkowski L, Johansson AC, Lee KF, Jiang J, Mohr C, Fermann ME, Foltynowicz A. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 µm. Opt. Lett. 2016;41:2541–2544.
    1. Nugent-Glandorf L, Neely T, Adler F, Fleisher AJ, Cossel KC, Bjork B, Dinneen T, Ye J, Diddams SA. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 2012;37:3285–3287.
    1. Khodabakhsh A, Rutkowski L, Morville J, Foltynowicz A. Mid-infrared continuous-filtering Vernier spectroscopy using a doubly resonant optical parametric oscillator. Appl. Phys. B-Lasers Opt. 2017;123:12.
    1. Zhang ZW, Gardiner T, Reid DT. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Opt. Lett. 2013;38:3148–3150.
    1. Jin YW, Cristescu SM, Harren FJM, Mandon J. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy. Opt. Lett. 2014;39:3270–3273.
    1. H. Timmers, A. Kowligy, A. Lind, F.C. Cruz, N. Nader, M. Silfies, T.K. Allison, G. Ycas, P.G. Schunemann, S.B. Papp, S.A. Diddams, Dual frequency comb spectroscopy in the molecular fingerprint region. arXiv:1712.09764 [physics.optics] (2017)
    1. Kara O, Maidment L, Gardiner T, Schunemann PG, Reid DT. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators. Opt. Express. 2017;25:32713–32721.
    1. Hugi A, Villares G, Blaser S, Liu HC, Faist J. Mid-infrared frequency comb based on a quantum cascade laser. Nature. 2012;492:229.
    1. Wang Y, Soskind MG, Wang W, Wysocki G. High-resolution multi-heterodyne spectroscopy based on Fabry–Perot quantum cascade lasers. Appl. Phys. Lett. 2014;104:5.
    1. Villares G, Hugi A, Blaser S, Faist J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 2014;5:5192.
    1. Westberg J, Sterczewski LA, Wysocki G. Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers. Appl. Phys. Lett. 2017;110:5.
    1. Baumann E, Giorgetta FR, Swann WC, Zolot AM, Coddington I, Newbury NR. Spectroscopy of the methane u3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A. 2011;84:9.
    1. FDA, FDAMedical Devices.
    1. Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ, Fallon JT, Fisher PE, Gass A, Greenberg J, Kobashigawa J, Mancini D, Rayburn B, Zucker MJ. Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study) J. Heart Lung Transpl. 2004;23:701–708.
    1. Kamat PC, Roller CB, Namjou K, Jeffers JD, Faramarzalian A, Salas R, McCann PJ. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer. Appl. Opt. 2007;46:3969–3975.
    1. Ciaffoni L, Hancock G, Harrison JJ, van Helden J-PH, Langley CE, Peverall R, Ritchie GAD, Wood S. Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection. Anal. Chem. 2013;85:846–850.
    1. Arslanov DD, Swinkels K, Cristescu SM, Harren FJM. Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy. Opt. Express. 2011;19:24078–24089.
    1. Tuzson B, Looser H, Felder F, Bovey F, Tappy L, Emmenegger L. High-brightness sources and light-driven interactions. Strasbourg: Optical Society of America; 2018. Human breath acetone analysis by mid-IR laser spectroscopy: development and application.
    1. Hancock G, Langley CE, Peverall R, Ritchie GAD, Taylor D. Laser-based method and sample handling protocol for measuring breath acetone. Anal. Chem. 2014;86:5838–5843.
    1. Blaikie TPJ, Couper J, Hancock G, Hurst PL, Peverall R, Richmond G, Ritchie GAD, Taylor D, Valentine K. Portable device for measuring breath acetone based on sample preconcentration and cavity enhanced spectroscopy. Anal. Chem. 2016;88:11016–11021.
    1. Reyes-Reyes A, Horsten RC, Urbach HP, Bhattacharya N. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy. Anal. Chem. 2015;87:507–512.
    1. Centeno R, Mandon J, Harren FJM, Cristescu SM. Influence of ethanol on breath acetone measurements using an external cavity quantum cascade laser. Photonics. 2016;3:9.
    1. Metsala M, Schmidt FM, Skytta M, Vaittinen O, Halonen L. Acetylene in breath: background levels and real-time elimination kinetics after smoking. J. Breath Res. 2010;4:8.
    1. Marchenko D, Neerincx AH, Mandon J, Zhang J, Boerkamp M, Mink J, Cristescu SM, Hekkert ST, Harren FJM. A compact laser-based spectrometer for detection of C2H2 in exhaled breath and HCN in vitro. Appl. Phys. B-Lasers Opt. 2015;118:275–280.
    1. Schmidt FM, Vaittinen O, Metsala M, Lehto M, Forsblom C, Groop PH, Halonen L. Ammonia in breath and emitted from skin. J. Breath Res. 2013;7:14.
    1. Chen W, Metsala M, Vaittinen O, Halonen L. The origin of mouth-exhaled ammonia. J. Breath Res. 2014;8:9.
    1. Chen W, Laiho S, Vaittinen O, Halonen L, Ortiz F, Forsblom C, Groop PH, Lehto M, Metsala M. Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis. J. Breath Res. 2016;10:11.
    1. Narasimhan LR, Goodman W, Patel CKN. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc. Natl. Acad. Sci. U. S. A. 2001;98:46174621.
    1. Lewicki R, Kosterev AA, Bakhirkin YA, Thomazy DM, Doty J, Dong L, Tittel FK, Risby TH, Solga S, Kane D, Day T. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Baltimore,: Optical Society of America; 2009. Real time ammonia detection in exhaled human breath with a quantum cascade laser based sensor; p. CMS6.
    1. Solga SF, Mudalel M, Spacek LA, Lewicki R, Tittel FK, Loccioni C, Russo A, Ragnoni A, Risby TH. Changes in the concentration of breath ammonia in response to exercise: a preliminary investigation. J. Breath Res. 2014;8:8.
    1. Manne J, Sukhorukov O, Jager W, Tulip J. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. Appl. Opt. 2006;45:9230–9237.
    1. Manne J, Jager W, Tulip J. Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques. Appl. Phys. B-Lasers Opt. 2009;94:337–344.
    1. Owen K, Farooq A. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f. Appl. Phys. B-Lasers Opt. 2014;116:371–383.
    1. Crosson ER, Ricci KN, Richman BA, Chilese FC, Owano TG, Provencal RA, Todd MW, Glasser J, Kachanov AA, Paldus BA, Spence TG, Zare RN. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. Anal. Chem. 2002;74:2003–2007.
    1. Maity A, Som S, Ghosh C, Banik GD, Daschakraborty SB, Ghosh S, Chaudhuri S, Pradhan M. Oxygen-18 stable isotope of exhaled breath CO2 as a non-invasive marker of Helicobacter pylori infection. J. Anal. At. Spectrom. 2014;29:2251–2255.
    1. Som S, De A, Banik GD, Maity A, Ghosh C, Pal M, Daschakraborty SB, Chaudhuri S, Jana S, Pradhan M. Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2. Sci. Rep. 2015;5:9.
    1. Fjodorow P, Hellmig O, Baev VM. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 mu m for intracavity absorption spectroscopy. Appl. Phys. B-Lasers Opt. 2018;124:8.
    1. Moeskops BWM, Naus H, Cristescu SM, Harren FJM. Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath. Appl. Phys. B-Lasers Opt. 2006;82:649–654.
    1. Wysocki G, McCurdy M, So S, Weidmann D, Roller C, Curl RF, Tittel FK. Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide. Appl. Opt. 2004;43:6040–6046.
    1. Halmer D, von Basum G, Hering P, Murtz M. Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide. Opt. Lett. 2005;30:2314–2316.
    1. Parameswaran KR, Rosen DI, Allen MG, Ganz AM, Risby TH. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements. Appl. Opt. 2009;48:B73–B79.
    1. Patterson CS, McMillan LC, Stevenson K, Radhakrishnan K, Shiels PG, Padgett MJ, Skeldon KD. Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy. J. Breath Res. 2007;1:8.
    1. Skeldon KD, Patterson C, Wyse CA, Gibson GM, Padgett MJ, Longbottom C, McMillan LC. The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy. J. Opt. A-Pure Appl. Opt. 2005;7:S376–S384.
    1. von Basum G, Dahnke H, Halmer D, Hering P, Murtz M. Online recording of ethane traces in human breath via infrared laser spectroscopy. J. Appl. Physiol. 2003;95:2583–2590.
    1. Skeldon KD, Gibson GM, Wyse CA, McMillan LC, Monk SD, Longbottom C, Padgett MJ. Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science. Appl. Opt. 2005;44:4712–4721.
    1. Skeldon KD, McMillan LC, Wyse CA, Monk SD, Gibson G, Patterson C, France T, Longbottom C, Padgett MJ. Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer. Respir. Med. 2006;100:300–306.
    1. Halmer D, Thelen S, Hering P, Murtz M. Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer. Appl. Phys. B-Lasers Opt. 2006;85:437–443.
    1. Paardekooper LM, van den Bogaart G, Kox M, Dingjan I, Neerincx AH, Bendix MB, Beest Mt, Harren FJM, Risby T, Pickkers P, Marczin N, Cristescu SM. Ethylene, an early marker of systemic inflammation in humans. Sci. Rep. 2017;7:6889.
    1. Popa C, Patachia M, Banita S, Matei C, Bratu AM, Dumitras DC. The level of ethylene biomarker in the renal failure of elderly patients analyzed by photoacoustic spectroscopy. Laser Phys. 2013;23:4.
    1. Schmidt FM, Metsala M, Vaittinen O, Halonen L. Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin. J. Breath Res. 2011;5:10.
    1. Chen W, Metsala M, Vaittinen O, Halonen L. Hydrogen cyanide in the headspace of oral fluid and in mouth-exhaled breath. J. Breath Res. 2014;8:8.
    1. Tuboly E, Szabo A, Eros G, Mohacsi A, Szabo G, Tengolics R, Rakhely G, Boros M. Determination of endogenous methane formation by photoacoustic spectroscopy. J. Breath Res. 2013;7:9.
    1. Keppler F, Schiller A, Ehehalt R, Greule M, Hartmann J, Polag D. Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. J. Breath Res. 2016;10:11.
    1. Bakhirkin YA, Kosterev AA, Roller C, Curl RF, Tittel FK. Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl. Opt. 2004;43:2257–2266.
    1. Namjou K, Roller CB, Reich TE, Jeffers JD, McMillen GL, McCann PJ, Camp MA. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy. Appl. Phys. B-Lasers Opt. 2006;85:427–435.
    1. Roller C, Namjou K, Jeffers JD, Camp M, Mock A, McCann PJ, Grego J. Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation. Appl. Opt. 2002;41:6018–6029.
    1. Oever J, Mandon J, Netea MG, van Deuren M, Harren FJM, Cristescu SM, Pickkers P. Pulmonary infection, and not systemic inflammation, accounts for increased concentrations of exhaled nitric oxide in patients with septic shock. J. Breath Res. 2013;7:7.
    1. McCurdy MR, Bakhirkin Y, Wysocki G, Tittel FK. Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy. J. Biomed. Opt. 2007;12:9.
    1. Marchenko D, Mandon J, Cristescu SM, Merkus PJFM, Harren FJM. Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide. Appl. Phys. B. 2013;111:359–365.
    1. Heinrich K, Fritsch T, Hering P, Murtz M. Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath. Appl. Phys. B-Lasers Opt. 2009;95:281–286.
    1. Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik RA, Kao C, Wysocki G. Shot-noise limited Faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood. Sci Rep. 2015;5:8.
    1. Di Natale C, Paolesse R, Martinelli E, Capuano R. Solid-state gas sensors for breath analysis: a review. Anal. Chim. Acta. 2014;824:1–17.
    1. Leopold JH, Bos LDJ, Sterk PJ, Schultz MJ, Fens N, Horvath I, Bikov A, Montuschi P, Di Natale C, Yates DH, Abu-Hanna A. Comparison of classification methods in breath analysis by electronic nose. J. Breath Res. 2015;9:12.
    1. Rock F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem. Rev. 2008;108:705–725.
    1. Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE. Breath acetone monitoring by portable Si:WO3 gas sensors. Anal. Chim. Acta. 2012;738:69–75.
    1. Kerstel ERT, Iannone RQ, Chenevier M, Kassi S, Jost HJ, Romanini D. A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications. Appl. Phys. B. 2006;85:397–406.
    1. Amann A, Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Haidenberger A, Sponring A, Filipiak W, Miekisch W, Schubert J, Troppmair J, Buszewski B. Analysis of exhaled breath for screening of lung cancer patients. Memo. Mag. Eur. Med. Oncol. 2010;3:106–112.
    1. Smith D, Spanel P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J. Breath Res. 2014;8:23.
    1. Mastrigt E, Reyes-Reyes A, Brand K, Bhattacharya N, Urbach HP, Stubbs AP, de Jongste JC, Pijnenburg MW. Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis. J. Breath Res. 2016;10:8.
    1. Ruzsanyi V, Kalapos MP. Breath acetone as a potential marker in clinical practice. J. Breath Res. 2017;11:18.
    1. Blaikie TPJ, Edge JA, Hancock G, Lunn D, Megson C, Peverall R, Richmond G, Ritchie GAD, Taylor D. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes. J. Breath Res. 2014;8:046010.
    1. Jouy P, Wolf JM, Bidaux Y, Allmendinger P, Mangold M, Beck M, Faist J. Dual comb operation of λ~8.2 µm quantum cascade laser frequency comb with 1 W optical power. Appl. Phys. Lett. 2017;111:4.
    1. Cappelli F, Campo G, Galli I, Consolino L, Giusfredi G, Cancio P, Borri S, Hinkov B, Mazzotti D, Bartalini S, Faist J, Natale PD. 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference. Munich: Optical Society of America; 2017. Towards the full frequency stabilization of quantum cascade laser frequency combs; p. ED_4_2.
    1. Cappelli F, Campo G, Galli I, Giusfredi G, Bartalini S, Mazzotti D, Cancio P, Borri S, Hinkov B, Faist J, De Natale P. Frequency stability characterization of a quantum cascade laser frequency comb. Laser Photonics Rev. 2016;10:623–630.
    1. Vaittinen O, Metsälä M, Persijn S, Vainio M, Halonen L. Adsorption of ammonia on treated stainless steel and polymer surfaces. Appl. Phys. B. 2014;115:185–196.
    1. Piers RB, George BH, Nandor M. Exhaled nitric oxide as biomarker of acute lung injury: an unfulfilled promise? J. Breath Res. 2013;7:017118.
    1. Essat M, Harnan S, Gomersall T, Tappenden P, Wong R, Pavord I, Lawson R, Everard ML. Fractional exhaled nitric oxide for the management of asthma in adults: a systematic review. Eur. Respir. J. 2016;47:751–768.
    1. Hogman M. Extended NO analysis in health and disease. J. Breath Res. 2012;6:12.
    1. Lawal O, Ahmed WM, Nijsen TME, Goodacre R, Fowler SJ. Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics. 2017;13:16.
    1. Miekisch W, Kischkel S, Sawacki A, Liebau T, Mieth M, Schubert JK. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2008;2:017118.
    1. Romano A, Fischer L, Herbig J, Campbell-Sills H, Coulon J, Lucas P, Cappellin L, Biasioli F. Wine analysis by FastGC proton-transfer reaction-time-of-flight-mass spectrometry. Int. J. Mass Spectrom. 2104;369:81–86.
    1. Costello B, Ledochowski M, Ratcliffe NM. The importance of methane breath testing: a review. J. Breath Res. 2013;7:8.
    1. Kalantar-Zadeh K, Berean KJ, Ha N, Chrimes AF, Xu K, Grando D, Ou JZ, Pillai N, Campbell JL, Brkljača R, Taylor KM, Burgell RE, Yao CK, Ward SA, McSweeney CS, Muir JG, Gibson PR. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 2018;1:79–87.
    1. Sun MX, Jiang CY, Gong ZY, Zhao XM, Chen ZY, Wang ZN, Kang ML, Li YX, Wang CJ. A fully integrated standalone portable cavity ringdown breath acetone analyzer. Rev. Sci. Instrum. 2015;86:9.

Source: PubMed

3
Se inscrever