The impact of coronavirus infectious disease 19 (COVID-19) on oral health

Arkadiusz Dziedzic, Robert Wojtyczka, Arkadiusz Dziedzic, Robert Wojtyczka

Abstract

Health services across the world face an unprecedented situation as a result of a global COVID-19 outbreak. Urgent joined research efforts regarding the SARS-COV-2 rapid tests, accurate diagnosis, especially early recognition, and effective treatment of life-threatening complications would be highly desirable for humanity and medical workforce all over the world that try to combat a current global pandemic threat. Due to indirect complex effect, intensified COVID-19 therapies and multi-drug treatment, it is believed that some oral conditions could be aggravated by COVID-19 disease, particularly those with autoimmune aetiology, linked to compromised immune system or long-term pharmacotherapy.

Keywords: COVID-19; SARS-CoV-2 coronavirus; immunopathology; oral health; oral medicine; therapy.

© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

References

    1. Chan, J.‐W. , Yuan, S. , Kok, K.‐H. , To, K.‐W. , Chu, H. , Yang, J. , … Yuen, K.‐Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person‐to‐person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. 10.1016/S0140-6736(20)30154-9
    1. Chu, C. M. , Cheng, V. C. , Hung, I. F. , Wong, M. M. , Chan, K. H. , Chan, K. S. , … HKU/UCH SARS Study Group (2004). Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 59, 252–256. 10.1136/thorax.2003.012658
    1. Dong, L. , Hu, S. , & Gao, J. (2020). Discovering drugs to treat coronavirus disease 2019 (COVID‐19). Drug Discoveries & Therapeutics, 14(1), 58–60. 10.5582/ddt.2020.01012
    1. Gao, J. , Tian, Z. , & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID‐19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 72–73. 10.5582/bst.2020.01047
    1. Guo, Y. R. , Cao, Q. D. , Hong, Z. S. , Tan, Y. Y. , Chen, S. D. , Jin, H. J. , … Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID‐19) outbreak ‐ an update on the status. Military Medical Research, 7(1), 11. 10.1186/s40779-020-00240-0
    1. Hamming, I. , Timens, W. , Bulthuis, M. L. , Lely, A. T. , Navis, G. , & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology, 203(2), 631–637.
    1. Jensen, J. U. , Hein, L. , Lundgren, B. , Bestle, M. H. , Mohr, T. , Andersen, M. H. , … Procalcitonin and Survival Study Group (2015). Invasive Candida infections and the harm from antibacterial drugs in critically ill patients: Data from a randomized, controlled trial to determine the role of ciprofloxacin, piperacillin‐tazobactam, meropenem, and cefuroxime. Critical Care Medicine, 43(3), 594–602. 10.1097/CCM.0000000000000746
    1. Lovato, A. , de Filippis, C. , & Marioni, G. (2020). Upper airway symptoms in coronavirus disease 2019 (COVID‐19). American Journal of Otolaryngology, 102474. [Epub ahead of print] 10.1016/j.amjoto.2020.102474
    1. Mahase, E. (2020). Covid‐19: What treatments are being investigated? BMJ, 368, m1252. 10.1136/bmj.m1252
    1. Mehta, P. , McAuley, D. F. , Brown, M. , Sanchez, E. , Tattersall, R. S. , Manson, J. J. , & HLH Across Speciality Collaboration, UK (2020). COVID‐19: Consider cytokine storm syndromes and immunosuppression [published online ahead of print, 2020 Mar 16]. The Lancet, 395, 1033–1034.
    1. Prompetchara, E. , Ketloy, C. , & Palaga, T. (2020). Immune responses in COVID‐19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology, 38(1), 1–9.
    1. Pubchem (2020). Rotonavir. Retrieved from
    1. Sabino‐Silva, R. , Jardim, A. C. G. , & Siqueira, W. L. (2020). Coronavirus COVID‐19 impacts to dentistry and potential salivary diagnosis. Clinical Oral Investigations, 24, 1619–1621. 10.1007/s00784-020-03248-x
    1. Sayburn, A. (2020). Covid‐19: Trials of four potential treatments to generate “robust data” of what works. BMJ, 368, m1206. 10.1136/bmj.m1206
    1. Shi, Y. , Wang, Y. , Shao, C. , Huang, J. , Gan, J. , Huang, X. , … Melino, G. (2020). COVID‐19 infection: The perspectives on immune responses. Cell Death and Differentiation, 27, 1451–1454. 10.1038/s41418-020-0530-3
    1. Stebbing, J. , Phelan, A. , Griffin, I. , Tucker, C. , Oechsle, O. , Smith, D. , & Richardson, P. (2020). COVID‐19: Combining antiviral and anti‐inflammatory treatments. The Lancet Infectious Diseases, 20(4), 400–402. 10.1016/S1473-3099(20)30132-8
    1. Widegren, H. , Andersson, M. , Borgeat, P. , Flamand, L. , Johnston, S. , & Greiff, L. (2011). LTB4 increases nasal neutrophil activity and conditions neutrophils to exert antiviral effects. Respiratory Medicine, 105(7), 997–1006. 10.1016/j.rmed.2010.12.021
    1. Wu, C. , Chen, X. , Cai, Y. , Xia, J. , Zhou, X. , Xu, S. , … Song, Y. (2020). Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine, e200994. [Epub ahead of print] 10.1001/jamainternmed.2020.0994
    1. Xu, Z. , Shi, L. , Wang, Y. , Zhang, J. , Huang, L. , Zhang, C. , … Wang, F. S. (2020). Pathological findings of COVID‐19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8, 420–422. 10.1016/S2213-2600(20)30076-X
    1. Yuen, K. S. , Ye, Z. W. , Fung, S. Y. , Chan, C. P. , & Jin, D. Y. (2020). SARS‐CoV‐2 and COVID‐19: The most important research questions. Cell & Bioscience, 10, 40.

Source: PubMed

3
Se inscrever