NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy

Junichi Azuma, Masako Ohno, Ryuji Kubota, Soichiro Yokota, Takayuki Nagai, Kazunari Tsuyuguchi, Yasuhisa Okuda, Tetsuya Takashima, Sayaka Kamimura, Yasushi Fujio, Ichiro Kawase, Pharmacogenetics-based tuberculosis therapy research group, Junichi Azuma, Soichiro Yokota, Masako Ohno, Ichiro Kawase, Soichiro Yokota, Masami Ito, Masahide Mori, Takeya Fujikawa, Mari Miki, Toshihiko Yamaguchi, Yukihiro Yano, Masaharu Motone, Seigo Kitada, Kenji Fushitani, Yoshinobu Namba, Manabu Niinaka, Nobuyuki Naka, Hiromi Kimura, Hisako Hashimoto, Shin-ichi Kagami, Takayuki Nagai, Tetsuya Takashima, Yoshitaka Tamura, Hanako Kuhara, Kazunari Tsuyuguchi, Mitsunori Sakatani, Katsuhiro Suzuki, Seijiro Minamoto, Seiji Hayashi, Yasuhisa Okuda, Koji Inoue, Masataka Miyake, Tsuyoshi Ogura, Shigeru Kageyama, Ryoji Maekura, Hideki Nishikawa, Hideki Hara, Yasushi Fujio, Shinpei Nonen, Makiko Maeda, Miyuki Furutsuka, Tomoko Tanabe, Satoshi Nakayama, Airi Tokuda, Mika Takahashi, Akiko Yamamoto, Yuka Nakamura, Masako Ohno, Ryuji Kubota, Satomi Kamo, Sayaka Kamimura, Hiroshi Tamada, Junichi Azuma, Masako Ohno, Ryuji Kubota, Soichiro Yokota, Takayuki Nagai, Kazunari Tsuyuguchi, Yasuhisa Okuda, Tetsuya Takashima, Sayaka Kamimura, Yasushi Fujio, Ichiro Kawase, Pharmacogenetics-based tuberculosis therapy research group, Junichi Azuma, Soichiro Yokota, Masako Ohno, Ichiro Kawase, Soichiro Yokota, Masami Ito, Masahide Mori, Takeya Fujikawa, Mari Miki, Toshihiko Yamaguchi, Yukihiro Yano, Masaharu Motone, Seigo Kitada, Kenji Fushitani, Yoshinobu Namba, Manabu Niinaka, Nobuyuki Naka, Hiromi Kimura, Hisako Hashimoto, Shin-ichi Kagami, Takayuki Nagai, Tetsuya Takashima, Yoshitaka Tamura, Hanako Kuhara, Kazunari Tsuyuguchi, Mitsunori Sakatani, Katsuhiro Suzuki, Seijiro Minamoto, Seiji Hayashi, Yasuhisa Okuda, Koji Inoue, Masataka Miyake, Tsuyoshi Ogura, Shigeru Kageyama, Ryoji Maekura, Hideki Nishikawa, Hideki Hara, Yasushi Fujio, Shinpei Nonen, Makiko Maeda, Miyuki Furutsuka, Tomoko Tanabe, Satoshi Nakayama, Airi Tokuda, Mika Takahashi, Akiko Yamamoto, Yuka Nakamura, Masako Ohno, Ryuji Kubota, Satomi Kamo, Sayaka Kamimura, Hiroshi Tamada

Abstract

Objective: This study is a pharmacogenetic clinical trial designed to clarify whether the N-acetyltransferase 2 gene (NAT2) genotype-guided dosing of isoniazid improves the tolerability and efficacy of the 6-month four-drug standard regimen for newly diagnosed pulmonary tuberculosis.

Methods: In a multicenter, parallel, randomized, and controlled trial with a PROBE design, patients were assigned to either conventional standard treatment (STD-treatment: approx. 5 mg/kg of isoniazid for all) or NAT2 genotype-guided treatment (PGx-treatment: approx. 7.5 mg/kg for patients homozygous for NAT2 4: rapid acetylators; 5 mg/kg, patients heterozygous for NAT2 4: intermediate acetylators; 2.5 mg/kg, patients without NAT2 4: slow acetylators). The primary outcome included incidences of 1) isoniazid-related liver injury (INH-DILI) during the first 8 weeks of therapy, and 2) early treatment failure as indicated by a persistent positive culture or no improvement in chest radiographs at the 8th week.

Results: One hundred and seventy-two Japanese patients (slow acetylators, 9.3 %; rapid acetylators, 53.5 %) were enrolled in this trial. In the intention-to-treat (ITT) analysis, INH-DILI occurred in 78 % of the slow acetylators in the STD-treatment, while none of the slow acetylators in the PGx-treatment experienced either INH-DILI or early treatment failure. Among the rapid acetylators, early treatment failure was observed with a significantly lower incidence rate in the PGx-treatment than in the STD-treatment (15.0 % vs. 38 %). Thus, the NAT2 genotype-guided regimen resulted in much lower incidences of unfavorable events, INH-DILI or early treatment failure, than the conventional standard regimen.

Conclusion: Our results clearly indicate a great potential of the NAT2 genotype-guided dosing stratification of isoniazid in chemotherapy for tuberculosis.

Trial registration: ClinicalTrials.gov NCT00298870.

Figures

Fig. 1
Fig. 1
Trial profile. Abbreviations: RA-type, rapid acetylator genotype homozygous for NAT2*4; IA-type, intermediate acetylator genotypes heterozygous for NAT2*4; SA-type, slow acetylator genotypes without NAT2*4; PGx, NAT2 genotype-guided treatment in which INH dosage was pharmacogenetically stratified based on individual NAT2 genotype; STD, conventional standard treatment with standardized dosage for all; Low-dose, half the conventional standard dose; High-dose, 1.5 times the standard dose; St-dose, conventional standard dose; INH-DILI, Drug-induced liver injury associated with isoniazid
Fig. 2
Fig. 2
Overall incidence of combined unfavorable events in the patients who received PGx-therapy and in those who received empirical therapy
Fig. 3
Fig. 3
Cumulative incidence curves of isoniazid related drug-induced liver injury (INH-DILI) over time among the 172 patients. RA-type, rapid acetylator genotype; IA-type, intermediate acetylator genotypes; SA-type, slow acetylator genotypes; PGx, PGx-guided treatment; STD, conventional standard-treatment
Fig. 4
Fig. 4
Incidence of isoniazid induced liver injury (INH-DILI) and persistent positive culture among the patients with drug sensitive tuberculosis on sputum culture at screening. Closed columns, INH-DILI; open columns, persistent positive culture; RA-type, rapid acetylator genotype; IA-type, intermediate acetylator genotypes; SA-type, slow acetylator genotypes; PGx, PGx-guided treatment; STD, conventional standard-treatment
Fig. 5
Fig. 5
Incidence of combined unfavorable events among the patients with drug sensitive tuberculosis on sputum culture at screening. RA + IA-type, combined with rapid or slow acetylator genotypes; IA-type, intermediate acetylator genotypes; PGx, PGx-guided treatment; STD, conventional standard-treatment

References

    1. Global Health Observatory (GHO); Tuberculosis (TB). World Health Organization Web site. Accessed Sep 10, 2012.
    1. The Global Plan to Stop TB. Stop TB Partnership Web site. Accessed Sep 10, 2012.
    1. Guidelines for treatment of tuberculosis, 4th ed. World Health Organization Web site. Accessed Sep 10, 2012.
    1. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, Fujiwara P, Grzemska M, Hopewell PC, Iseman MD, Jasmer RM, Koppaka V, Menzies RI, O’Brien RJ, Reves RR, Reichman LB, Simone PM, Starke JR, Vernon AA. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003;167:603–662. doi: 10.1164/rccm.167.4.603.
    1. Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med. 2003;167:1472–1477. doi: 10.1164/rccm.200206-626OC.
    1. Steele MA, Burk RF, DeaPrez RM. Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest. 1991;99:465–71. doi: 10.1378/chest.99.2.465.
    1. Jindani A, Nunn AJ, Enarson DA. Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet. 2004;364:1244–1251. doi: 10.1016/S0140-6736(04)17141-9.
    1. Durand F, Jebrak G, Pessayre D, Fournier M, Bernuau J. Hepatotoxicity of antitubercular treatments. Rationale for monitoring liver status. Drug Saf. 1996;15:394–405. doi: 10.2165/00002018-199615060-00004.
    1. Evans DA, Manley KA, Mc KV. Genetic control of isoniazid metabolism in man. Br Med J. 1960;2:485–491. doi: 10.1136/bmj.2.5197.485.
    1. Evans DA, Storey PB, Wittstadt FB, Manley KA. The determination of the isoniazid inactivator phenotype. Am Rev Respir Dis. 1960;82:853–861.
    1. Human NAT2 alleles (Haplotypes) (updated July 22, 2011) Accessed Sep 10, 2012.
    1. Mashimo M, Suzuki T, Abe M, Deguchi T. Molecular genotyping of N-acetylation polymorphism to predict phenotype. Hum Genet. 1992;90:139–143. doi: 10.1007/BF00210758.
    1. Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD, van der Walt BJ, Donald PR, van Jaarsveld PP. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med. 1997;155:1717–1722. doi: 10.1164/ajrccm.155.5.9154882.
    1. Ellard GA. Variations between individuals and populations in the acetylation of isoniazid and its significance for the treatment of pulmonary tuberculosis. Clin Pharmacol Ther. 1976;19:610–625.
    1. Donald PR, Sirgel FA, Venter A, Parkin DP, Seifart HI, van de Wal BW, Werely C, van Helden PD, Maritz JS. The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin Infect Dis. 2004;39:1425–1430. doi: 10.1086/424999.
    1. Kubota R, Ohno M, Yasunaga M, Yokota S, Maekura R, Azuma J. Tentative treatments for tuberculosis based on N-acetyltransferase gene polymorphism. Jpn J Therapeutic Drug Monitoring. 2005;22:336–340.
    1. Evans DA. N-acetyltransferase. Pharmacol Ther. 1989;42:157–234. doi: 10.1016/0163-7258(89)90036-3.
    1. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R, Ito M, Yamamoto Y, Ogura T, Maeda K, et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis. 2000;4:256–261.
    1. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY, Chang FY, Lee SD. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology. 2002;35:883–889. doi: 10.1053/jhep.2002.32102.
    1. Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M, Cascorbi I, Doroshyenko O, Sorgel F, Fuhr U. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother. 2005;49:1733–1738. doi: 10.1128/AAC.49.5.1733-1738.2005.
    1. Kubota R, Ohno M, Hasunuma T, Iijima H, Azuma J. Dose-escalation study of isoniazid in healthy volunteers with the rapid acetylator genotype of arylamine N-acetyltransferase 2. Eur J Clin Pharmacol. 2007;63:927–933. doi: 10.1007/s00228-007-0333-1.
    1. Accessed Sep 10, 2012.
    1. Takikawa H, Onji M. A proposal of the diagnostic criteria of drug-induced liver injury. Hepatol Res. 2005;32:250–1. doi: 10.1016/j.hepres.2005.05.007.
    1. Danan G, Benichou C. Causality assessment of adverse reactions to drugs. A novel method based on the conclusions of international consensus meetings: Application to drug-Induced liver injuries. J Clin Epidemiol. 1993;46:1323–30. doi: 10.1016/0895-4356(93)90101-6.
    1. Tokuda A, Ohno M, Furutsuka M, Kubota R, Nakayama S, Yokota S, Maekura R, Azuma J. GSTs and NAT2 gene polymorphisms and drug induced hepatotoxicity in anti-tuberculosis therapy. Jpn J Clin Pharmacol Ther. 2006;37:S224.
    1. Mitchison DA. Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months. Am Rev Respir Dis. 1993;147:1062–1063. doi: 10.1164/ajrccm/147.4.1062.
    1. Kimerling ME, Phillips P, Patterson P, Hall M, Robinson CA, Dunlap NE. Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest. 1998;113:1178–1183. doi: 10.1378/chest.113.5.1178.
    1. Weiner M, Burman W, Vernon A, Benator D, Peloquin CA, Khan A, Weis S, King B, Shah N, Hodge T. Low isoniazid concentrations and outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine. Am J Respir Crit Care Med. 2003;167:1341–1347. doi: 10.1164/rccm.200208-951OC.
    1. Weiner M, Benator D, Burman W, Peloquin CA, Khan A, Vernon A, Jones B, Silva-Trigo C, Zhao Z, Hodge T. Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis. Clin Infect Dis. 2005;40:1481–1491. doi: 10.1086/429321.
    1. Jayaram R, Shandil RK, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharath S, Kantharaj E, Balasubramanian V. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2004;48:2951–2957. doi: 10.1128/AAC.48.8.2951-2957.2004.
    1. Jindani A, Aber VR, Edwards EA, and Mitchison DA (1980) The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 121-939-949.
    1. Jindani A, Cj D, Mitchison DA. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am J Resp Crit Care Med. 2003;167:1348–1354. doi: 10.1164/rccm.200210-1125OC.
    1. Gumbo T, Louie A, Liu W, Ambrose PG, Bhavnani SM, Brown D, Drusano GL. Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J Infect Dis. 2007;195:194–201. doi: 10.1086/510247.
    1. Abe C, Hirano K, Wada M, Aoyagi T. Resistance of Mycobacterium tuberculosis of four first-line anti-tuberculosis drugs in Japan, 1997. Int J Tuberc Lung Dis. 2001;5:46–52.
    1. Sunahara S, Urano M, Ogawa M. Genetical and geographic studies on isoniazid inactivation. Science. 1961;134:1530–1531. doi: 10.1126/science.134.3489.1530.
    1. Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet. 1995;57:581–592.

Source: PubMed

3
Se inscrever