A Randomized, Placebo-Controlled, Active-Reference, Double-Blind, Flexible-Dose Study of the Efficacy of Vortioxetine on Cognitive Function in Major Depressive Disorder

Atul R Mahableshwarkar, John Zajecka, William Jacobson, Yinzhong Chen, Richard S E Keefe, Atul R Mahableshwarkar, John Zajecka, William Jacobson, Yinzhong Chen, Richard S E Keefe

Abstract

This multicenter, randomized, double-blind, placebo-controlled, active-referenced (duloxetine 60 mg), parallel-group study evaluated the short-term efficacy and safety of vortioxetine (10-20 mg) on cognitive function in adults (aged 18-65 years) diagnosed with major depressive disorder (MDD) who self-reported cognitive dysfunction. Efficacy was evaluated using ANCOVA for the change from baseline to week 8 in the digit symbol substitution test (DSST)-number of correct symbols as the prespecified primary end point. The patient-reported perceived deficits questionnaire (PDQ) and physician-assessed clinical global impression (CGI) were analyzed in a prespecified hierarchical testing sequence as key secondary end points. Additional predefined end points included the objective performance-based University of San Diego performance-based skills assessment (UPSA) (ANCOVA) to measure functionality, MADRS (MMRM) to assess efficacy in depression, and a prespecified multiple regression analysis (path analysis) to calculate direct vs indirect effects of vortioxetine on cognitive function. Safety and tolerability were assessed at all visits. Vortioxetine was statistically superior to placebo on the DSST (P < 0.05), PDQ (P < 0.01), CGI-I (P < 0.001), MADRS (P < 0.05), and UPSA (P < 0.001). Path analysis indicated that vortioxetine's cognitive benefit was primarily a direct treatment effect rather than due to alleviation of depressive symptoms. Duloxetine was not significantly different from placebo on the DSST or UPSA, but was superior to placebo on the PDQ, CGI-I, and MADRS. Common adverse events (incidence ⩾ 5%) for vortioxetine were nausea, headache, and diarrhea. In this study of MDD adults who self-reported cognitive dysfunction, vortioxetine significantly improved cognitive function, depression, and functionality and was generally well tolerated.

Figures

Figure 1
Figure 1
Study flow of a randomized, double-blind, placebo-controlled, and duloxetine-referenced study of vortioxetine.
Figure 2
Figure 2
Distribution of DSST number of correct symbols score at baseline.
Figure 3
Figure 3
(a) Difference from placebo and standardized effect size vs placebo in DSST number of correct symbols at week 8 (ANCOVA, OC, LS means). (b) Path analysis of direct and indirect effects on cognitive function.
Figure 4
Figure 4
(a) Change from baseline in PDQ attention/concentration and planning/organization score (MMRM, FAS, LS means) at week 8. (b) CGI-I score by assessment visit (MMRM, FAS, LS means). (c) Change from baseline in UPSA total score at week 8 (ANCOVA, OC, LS means). (d) Change from baseline in WLQ subscores and percentage productivity loss at week 8 (ANCOVA, OC, LS means).

References

    1. Adler DA, McLaughlin TJ, Rogers WH, Chang H, Lapitsky L, Lerner D (2006). Job performance deficits due to depression. Am J Psychiatry 163: 1569–1576.
    1. Afridi MI, Hina M, Qureshi IS, Hussain M (2011). Cognitive disturbance comparison among drug-naive depressed cases and healthy controls. J Coll Physicians Surg Pak 21: 351–355.
    1. Alzheimer's Association (2012). 2012 Alzheimer's disease facts and figures. Alzheimer Dement 8: 131–168.
    1. Arnold LM, Palmer RH, Gendreau RM, Chen W (2012). Relationships among pain, depressed mood, and global status in fibromyalgia patients: post hoc analyses of a randomized, placebo-controlled trial of milnacipran. Psychosomatics 53: 371–379.
    1. Atri A, Shaughnessy LW, Locascio JJ, Growdon JH (2008). Long-term course and effectiveness of combination therapy in Alzheimer's disease. Alzheimer Dis Assoc Disord 22: 209–221.
    1. Bang-Andersen B, Ruhland T, Jorgensen M, Smith G, Frederiksen K, Jensen KG et al (2011). Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54: 3206–3221.
    1. Baudouin A, Clarys D, Vanneste S, Isingrini M (2009). Executive functioning and processing speed in age-related differences in memory: contribution of a coding task. Brain Cogn 71: 240–245.
    1. Bora E, Harrison BJ, Yucel M, Pantelis C (2013). Cognitive impairment in euthymic major depressive disorder: a meta-analysis. Psychol Med 43: 2017–2026.
    1. Burt DB, Zembar MJ, Niederehe G (1995). Depression and memory impairment: a meta-analysis of the association, its pattern, and specificity. Psychol Bull 117: 285–305.
    1. Castaneda AE, Suvisaari J, Marttunen M, Perala J, Saarni SI, Aalto-Setala T et al (2008). Cognitive functioning in a population-based sample of young adults with a history of non-psychotic unipolar depressive disorders without psychiatric comorbidity. J Affect Disord 110: 36–45.
    1. Clarke PJ, Ailshire JA, House JS, Morenoff JD, King K, Melendez R et al (2012). Cognitive function in the community setting: the neighbourhood as a source of 'cognitive reserve'? J Epidemiol Community Health 66: 730–736.
    1. Dickinson D, Ramsey ME, Gold JM (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 64: 532–542.
    1. Ditlevsen S, Christensen U, Lynch J, Damsgaard MT, Keiding N (2005). The mediation proportion: a structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable. Epidemiology 16: 114–120.
    1. Goel N, Rao H, Durmer JS, Dinges DF (2009). Neurocognitive consequences of sleep deprivation. Semin Neurol 29: 320–339.
    1. Grant MM, Thase ME, Sweeney JA (2001). Cognitive disturbance in outpatient depressed younger adults: evidence of modest impairment. Biol Psychiatry 50: 35–43.
    1. Gualtieri CT, Morgan DW (2008). The frequency of cognitive impairment in patients with anxiety, depression, and bipolar disorder: an unaccounted source of variance in clinical trials. J Clin Psychiatry 69: 1122–1130.
    1. Heaton RK, Temkin N, Dikmen S, Avitable N, Taylor MJ, Marcotte TD et al (2001). Detecting change: a comparison of three neuropsychological methods, using normal and clinical samples. Arch Clin Neuropsychol 16: 75–91.
    1. Hill SK, Keshavan MS, Thase ME, Sweeney JA (2004). Neuropsychological dysfunction in antipsychotic-naive first-episode unipolar psychotic depression. Am J Psychiatry 161: 996–1003.
    1. Katona C, Hansen T, Olsen CK (2012). A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int Clin Psychopharmacol 27: 215–223.
    1. Keefe R, Kraemer H, Epstein R, Frank E, Haynes G, Laughren T et al (2013. a). Defining a clinically meaningful effect for the design and interpretation of randomized controlled trials. Innov Clin Neurosci 10: 4S–19s.
    1. Keefe RSE, Mahableshwarkar AR, Olsen CK (2013. b). Clinical evidence for improvement in cognitive dysfunction in patients with major depressive disorder (MDD) after treatment with vortioxetine (Abstract P.2.f.013). Eur Neuropsychopharmacol 23: S402–S403.
    1. Lee RS, Hermens DF, Porter MA, Redoblado-Hodge MA (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. J Affect Disord 140: 113–124.
    1. Mahurin RK, Velligan DI, Hazleton B, Mark Davis J, Eckert S, Miller AL (2006). Trail making test errors and executive function in schizophrenia and depression. Clin Neuropsychol 20: 271–288.
    1. Marangell LB, Clauw DJ, Choy E, Wang F, Shoemaker S, Bradley L et al (2011). Comparative pain and mood effects in patients with comorbid fibromyalgia and major depressive disorder: secondary analyses of four pooled randomized controlled trials of duloxetine. Pain 152: 31–37.
    1. McGough JJ, Faraone SV (2009). Estimating the size of treatment effects: moving beyond p values. Psychiatry (Edgmont) 6: 21–29.
    1. McIntyre RS, Lophaven S, Olsen CK (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol 17: 1557–1567.
    1. Miller LS, Faustman WO, Moses JA Jr., Csernansky JG (1991). Evaluating cognitive impairment in depression with the Luria-Nebraska Neuropsychological Battery: severity correlates and comparisons with nonpsychiatric controls. Psychiatry Res 37: 219–227.
    1. Mork A, Montezinho LP, Miller S, Trippodi-Murphy C, Plath N, Li Y et al (2013). Vortioxetine (Lu AA21004), a novel multimodal antidepressant, enhances memory in rats. Pharmacol Biochem Behav 105: 41–50.
    1. Mork A, Pehrson A, Brennum LT, Moller NS, Zhong H, Lassen AB et al (2012). Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340: 666–675.
    1. Murrough JW, Iacoviello B, Neumeister A, Charney DS, Iosifescu DV (2011). Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies. Neurobiol Learn Mem 96: 553–563.
    1. Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004). Identification of separable cognitive factors in schizophrenia. Schizophr Res 72: 29–39.
    1. Parkin AJ, Java RI (2000). Determinants of age-related memory loss. In: Perfect TJ, Maylor EA (eds) Models of Cognitive Aging. Oxford University Press: New York, NY. pp 188–203.
    1. Pehrson AL, Cremers T, Betry C, van der Hart MG, Jorgensen L, Madsen M et al (2013). Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters-A rat microdialysis and electrophysiology study. Eur Neuropsychopharmacol 23: 133–145.
    1. Pehrson AL, Leiser SC, Gulinello M, Dale E, Li Y, Waller JA et al (2014). Treatment of cognitive dysfunction in major depressive disorder-a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol (e-pub ahead of print 5 August 2014; doi:10.1016/j.ejphar.2014.07.044).
    1. Pehrson AL, Sanchez C (2014). Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. CNS Spectr 19: 121–133.
    1. Piccinin AM, Rabbitt PM (1999). Contribution of cognitive abilities to performance and improvement on a substitution coding task. Psychol Aging 14: 539–551.
    1. Raskin J, Wiltse CG, Siegal A, Sheikh J, Xu J, Dinkel JJ et al (2007). Efficacy of duloxetine on cognition, depression, and pain in elderly patients with major depressive disorder: an 8-week, double-blind, placebo-controlled trial. Am J Psychiatry 164: 900–909.
    1. Robinson LJ, Thompson JM, Gallagher P, Goswami U, Young AH, Ferrier IN et al (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. J Affect Disord 93: 105–115.
    1. Rock PL, Roiser JP, Riedel WJ, Blackwell AD (2014). Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med 44: 2029–2040.
    1. Rockwood K (2004). Size of the treatment effect on cognition of cholinesterase inhibition in Alzheimer's disease. J Neurol Neurosurg Psychiatry 75: 677–685.
    1. Rosano C, Newman AB, Katz R, Hirsch CH, Kuller LH (2008). Association between lower digit symbol substitution test score and slower gait and greater risk of mortality and of developing incident disability in well-functioning older adults. J Am Geriatr Soc 56: 1618–1625.
    1. Salthouse TA (1992). What do adult age differences in the Digit Symbol Substitution Test reflect? J Gerontol 47: P121–P128.
    1. Sanchez C, Asin KE, Artigas F (2015). Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther 145C: 43–57.
    1. Satz P, Cole MA, Hardy DJ, Rassovsky Y (2011). Brain and cognitive reserve: mediator(s) and construct validity, a critique. J Clin Exp Neuropsychol 33: 121–130.
    1. Smith DJ, Muir WJ, Blackwood DH (2006). Neurocognitive impairment in euthymic young adults with bipolar spectrum disorder and recurrent major depressive disorder. Bipolar Disord 8: 40–46.
    1. Stern Y (2002). What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8: 448–460.
    1. Stordal KI, Lundervold AJ, Egeland J, Mykletun A, Asbjornsen A, Landro NI et al (2004). Impairment across executive functions in recurrent major depression. Nord J Psychiatry 58: 41–47.
    1. Streiner DL (2005). Finding our way: an introduction to path analysis. Can J Psychiatry 50: 115–122.
    1. Tan BL (2009). Profile of cognitive problems in schizophrenia and implications for vocational functioning. Aust Occup Ther J 56: 220–228.
    1. Trivedi MH, Greer TL (2014). Cognitive dysfunction in unipolar depression: implications for treatment. J Affect Disord 152-154: 19–27.
    1. Trivedi MH, Lin EH, Katon WJ (2007). Consensus recommendations for improving adherence, self-management, and outcomes in patients with depression. CNS Spectr 12: 1–27.
    1. Tuulio-Henriksson A, Perala J, Saarni SI, Isometsa E, Koskinen S, Lonnqvist J et al (2011). Cognitive functioning in severe psychiatric disorders: a general population study. Eur Arch Psychiatry Clin Neurosci 261: 447–456.
    1. Uher R, Payne JL, Pavlova B, Perlis RH (2014). Major depressive disorder in DSM-5: implications for clinical practice and research of changes from DSM-IV. Depress Anxiety 31: 459–471.
    1. Wallace A, Pehrson AL, Sánchez C, Morilak DA (2014). Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats. Int J Neuropsychopharmacol 17: 1695–1706.
    1. Westrich L, Pehrson A, Zhong H, Nielsen SM, Frederiksen K, Stensbol TB et al (2012). In vitro and in vivo effects for the multimodal antidepressant vortioxetine (Lu AA21004) at human and rat targets. Int J Psychiatry Clin Pract 16: 47.
    1. World Health Organization (WHO) (2009) .Depression .
    1. Zakzanis KK, Leach L, Kaplan E (1998). On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry Neuropsychol Behav Neurol 11: 111–119.
    1. Zihl J, Fink T, Pargent F, Ziegler M, Buhner M (2014). Cognitive reserve in young and old healthy subjects: differences and similarities in a testing-the-limits paradigm with DSST. PLoS One 9: e84590.

Source: PubMed

3
Se inscrever