Serum Biomarkers for Inflammatory Bowel Disease

Peng Chen, Gaoshi Zhou, Jingxia Lin, Li Li, Zhirong Zeng, Minhu Chen, Shenghong Zhang, Peng Chen, Gaoshi Zhou, Jingxia Lin, Li Li, Zhirong Zeng, Minhu Chen, Shenghong Zhang

Abstract

Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, inflammatory disorder of the gastrointestinal tract. As the novel therapeutic goal and biologicals are widely recognized, accurate assessment of disease and prediction of therapeutic response have become a crucial challenge in clinical practice. Also, because of the continuously rising incidence, convenient and economical methods of diagnosis and clinical assessment are urgently needed. Recently, serum biomarkers have made a great progress and become a focus in IBD study because they are non-invasive, convenient, and relatively inexpensive than are markers in biopsy tissue, stool, breath, and other body fluids. Aims: To review the available data on serological biomarkers for IBD. Methods: We searched PubMed using predefined key words on relevant literatures of serum biomarkers regarding diagnosis, evaluation of therapeutic efficacy, surveillance of disease activity, and assessment of prognosis for IBD. Results: We reviewed serological biomarkers that are well-established and widely used (e.g., C-reactive protein), newly discovered biomarkers (e.g., cytokines, antibodies, and non-coding RNAs), and also recently advancements in serological biomarkers (e.g., metabolomics and proteomics) that are used in different aspects of IBD management. Conclusions: With such a wealth of researches, to date, there are still no ideal serum biomarkers for IBD. Serum profiling and non-coding RNAs are just starting to blossom but reveal great promise for future clinical practice. Combining different biomarkers can be valuable in improving performance of disease evaluation.

Keywords: C-reactive protein; Inflammatory bowel disease; Serum biomarker; activity evaluation; diagnosis; non-coding RNA; prognosis prediction.

Copyright © 2020 Chen, Zhou, Lin, Li, Zeng, Chen and Zhang.

Figures

Figure 1
Figure 1
Serum biomarkers for inflammatory bowel disease (IBD) management. Antimicrobial antibodies are antibodies that targeted microbiota-derived antigens through the interplay between host immune system and gut microbiota. Both environmental factors and gut microbiota influence metabolome of patients. Patients with IBD tend to show a low level of vitamin D, which is partly caused by absorption dysfunction due to active disease. Intestinal epithelial cells from the inflamed mucosa secrete exosome, which contains microRNA (miRNAs) and long non-coding RNAs (lncRNAs) and other functional proteins in circulation. Pro-inflammatory cytokines were secreted by activated immune cells, which induce the expression of CRP. Excessive deposition of extracellular matrix (ECM) components include laminin, fibronectin, collagen, and its propeptide. Several growth factors mediating development of fibrostenosis [platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and YKL-40]. bFGF promotes tissue healing by regulating proliferation of myofibroblast. Transforming growth factor (TGF)-β induced the expression of collagen and promoted intestinal fibrosis through inhibiting the expression of miR-29.

References

    1. Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. (2017) 152:313–21. 10.1053/j.gastro.2016.10.020
    1. Huang S, Li L, Ben-Horin S, Mao R, Lin S, Qiu Y, et al. . Mucosal healing is associated with the reduced disabling disease in Crohn's disease. Clin Transl Gastroenterol. (2019) 10:e15. 10.14309/ctg.0000000000000015
    1. Targownik LE, Singh H, Nugent Z, Bernstein CN. The epidemiology of colectomy in ulcerative colitis: results from a population-based cohort. Am J Gastroenterol. (2012) 107:1228–35. 10.1038/ajg.2012.127
    1. Ballard BR, M'Koma AE. Gastrointestinal endoscopy biopsy derived proteomic patterns predict indeterminate colitis into ulcerative colitis and Crohn's colitis. World J Gastrointest Endosc. (2015) 7:670–4. 10.4253/wjge.v7.i7.670
    1. Shah SC, Colombel JF, Sands BE, Narula N. Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn's disease. Aliment Pharmacol Ther. (2016) 43:317–33. 10.1111/apt.13475
    1. Ananthakrishnan AN, Korzenik JR, Hur C. Can mucosal healing be a cost-effective endpoint for biologic therapy in Crohn's disease? A decision analysis. Inflamm Bowel Dis. (2013) 19:37–44. 10.1002/ibd.22951
    1. Peyrin-Biroulet L, Reinisch W, Colombel JF, Mantzaris GJ, Kornbluth A, Diamond R, et al. . Clinical disease activity, C-reactive protein normalisation and mucosal healing in Crohn's disease in the SONIC trial. Gut. (2014) 63:88–95. 10.1136/gutjnl-2013-304984
    1. Gomollón F, Dignass A, Annese V, Tilg H, Van Assche G, Lindsay JO, III, et al. . European evidence-based consensus on the diagnosis and management of Crohn's Disease 2016: part 1: diagnosis and Medical Management. J Crohn's Colitis. (2016) 11:3–25. 10.1093/ecco-jcc/jjw168
    1. Fernandes SR, Rodrigues RV, Bernardo S, Cortez-Pinto J, Rosa I, Da SJ, et al. . Transmural healing is associated with improved long-term outcomes of patients with Crohn's disease. Inflamm Bowel Dis. (2017) 23:1403–9. 10.1097/MIB.0000000000001143
    1. Gionchetti P, Dignass A, Danese S, Magro DF, Rogler G, Lakatos PL, III, et al. . European evidence-based consensus on the diagnosis and management of Crohn's disease 2016: part 2: surgical management and special situations. J Crohns Colitis. (2017) 11:135–49. 10.1093/ecco-jcc/jjw169
    1. Harbord M, Eliakim R, Bettenworth D, Karmiris K, Katsanos K, Kopylov U, et al. . Corrigendum: third European evidence-based consensus on diagnosis and management of ulcerative colitis. part 2: current management. J Crohns Colitis. (2017) 11:1512. 10.1093/ecco-jcc/jjx105
    1. Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T, et al. . ECCO guidelines on therapeutics in Crohn's disease: medical treatment. J Crohns Colitis. (2020) 14:4–22. 10.1093/ecco-jcc/jjz180
    1. Ding NS, Hart A, De Cruz P. Systematic review: predicting and optimising response to anti-TNF therapy in Crohn's disease - algorithm for practical management. Aliment Pharmacol Ther. (2016) 43:30–51. 10.1111/apt.13445
    1. Ben-Horin S, Chowers Y. Review article: loss of response to anti-TNF treatments in Crohn's disease. Aliment Pharmacol Ther. (2011) 33:987–95. 10.1111/j.1365-2036.2011.04612.x
    1. Adegbola SO, Sahnan K, Warusavitarne J, Hart A, Tozer P. Anti-TNF therapy in Crohn's Disease. Int J Mol Sci. (2018) 19:2244–2260. 10.3390/ijms19082244
    1. Hazel K, O'Connor A. Emerging treatments for inflammatory bowel disease. Ther Adv Chronic Dis. (2020) 11:1753191073. 10.1177/2040622319899297
    1. Sands BE, Feagan BG, Rutgeerts P, Colombel JF, Sandborn WJ, Sy R, et al. . Effects of vedolizumab induction therapy for patients with Crohn's disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology. (2014) 147:618–27. 10.1053/j.gastro.2014.05.008
    1. Liefferinckx C, Verstockt B, Gils A, Noman M, Van Kemseke C, Macken E, et al. . Long-term clinical effectiveness of Ustekinumab in patients with Crohn's disease who failed biologic therapies: a national cohort study. J Crohns Colitis. (2019) 13:1401–9. 10.1093/ecco-jcc/jjz080
    1. Denson LA, Curran M, Mcgovern D, Koltun WA, Duerr RH, Kim SC, et al. . Challenges in IBD research: precision medicine. Inflamm Bowel Dis. (2019) 25(Suppl. 2): S31–9. 10.1093/ibd/izz078
    1. Vermeire S. Laboratory Markers in IBD: Useful, Magic, or Unnecessary Toys? Gut. (2006) 55:426–31. 10.1136/gut.2005.069476
    1. Rump JA, Scholmerich J, Gross V, Roth M, Helfesrieder R, Rautmann A, et al. . A new type of perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn's disease. Immunobiology. (1990) 181:406–13. 10.1016/S0171-2985(11)80509-7
    1. Smids C, Horjus THC, Groenen M, van Koolwijk E, Wahab PJ, van Lochem EG. The value of serum antibodies in differentiating inflammatory bowel disease, predicting disease activity and disease course in the newly diagnosed patient. Scand J Gastroenterol. (2017) 52:1104–12. 10.1080/00365521.2017.1344875
    1. Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR. Marker antibody expression stratifies Crohn's disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut. (2000) 47:487–96. 10.1136/gut.47.4.487
    1. Pavlidis P, Romanidou O, Roggenbuck D, Mytilinaiou MG, Al-Sulttan F, Liaskos C, et al. . Ileal inflammation may trigger the development of GP2-specific pancreatic autoantibodies in patients with Crohn's disease. Clin Dev Immunol. (2012) 2012:640835. 10.1155/2012/640835
    1. Bogdanos DP, Roggenbuck D, Reinhold D, Wex T, Pavlidis P, von Arnim U, et al. . Pancreatic-specific autoantibodies to glycoprotein 2 mirror disease location and behaviour in younger patients with Crohn's disease. BMC Gastroenterol. (2012) 12:102. 10.1186/1471-230X-12-102
    1. Michaels MA, Jendrek ST, Korf T, Nitzsche T, Teegen B, Komorowski L, et al. . Pancreatic autoantibodies against CUZD1 and GP2 are associated with distinct clinical phenotypes of Crohn's disease. Inflamm Bowel Dis. (2015) 21:2864–72. 10.1097/MIB.0000000000000564
    1. Deutschmann C, Sowa M, Murugaiyan J, Roesler U, Rober N, Conrad K, et al. . Identification of chitinase-3-like protein 1 as a novel neutrophil antigenic target in Crohn's disease. J Crohns Colitis. (2019) 13:894–904. 10.1093/ecco-jcc/jjz012
    1. Gathungu G, Kim MO, Ferguson JP, Sharma Y, Zhang W, Ng SM, et al. . Granulocyte-macrophage colony-stimulating factor autoantibodies: a marker of aggressive Crohn's disease. Inflamm Bowel Dis. (2013) 19:1671–80. 10.1097/MIB.0b013e318281f506
    1. Sipeki N, Davida L, Palyu E, Altorjay I, Harsfalvi J, Szalmas PA, et al. . Prevalence, significance and predictive value of antiphospholipid antibodies in Crohn's disease. World J Gastroenterol. (2015) 21:6952–64. 10.3748/wjg.v21.i22.6952
    1. Joossens M, Van Steen K, Branche J, Sendid B, Rutgeerts P, Vasseur F, et al. . Familial aggregation and antimicrobial response dose-dependently affect the risk for Crohn's disease. Inflamm Bowel Dis. (2010) 16:58–67. 10.1002/ibd.20985
    1. Paul S, Boschetti G, Rinaudo-Gaujous M, Moreau A, Del TE, Bonneau J, et al. . Association of anti-glycan antibodies and inflammatory bowel disease course. J Crohns Colitis. (2015) 9:445–51. 10.1093/ecco-jcc/jjv063
    1. Kuna AT. Serological markers of inflammatory bowel disease. Biochem Med. (2013) 23:28–42. 10.11613/BM.2013.006
    1. Hamilton AL, Kamm MA, De Cruz P, Wright EK, Selvaraj F, Princen F, et al. . Serologic antibodies in relation to outcome in postoperative Crohn's disease. J Gastroenterol Hepatol. (2017) 32:1195–203. 10.1111/jgh.13677
    1. Xiong Y, Wang GZ, Zhou JQ, Xia BQ, Wang XY, Jiang B. Serum antibodies to microbial antigens for Crohn's disease progression: a meta-analysis. Eur J Gastroenterol Hepatol. (2014) 26:733–42. 10.1097/MEG.0000000000000102
    1. Kevans D, Waterman M, Milgrom R, Xu W, Van Assche G, Silverberg M. Serological markers associated with disease behavior and response to anti-tumor necrosis factor therapy in ulcerative colitis. J Gastroenterol Hepatol. (2015) 30:64–70. 10.1111/jgh.12661
    1. Elkadri AA, Stempak JM, Walters TD, Lal S, Griffiths AM, Steinhart AH, et al. . Serum antibodies associated with complex inflammatory bowel disease. Inflamm Bowel Dis. (2013) 19:1499–505. 10.1097/MIB.0b013e318281f2a1
    1. Zhou G, Song Y, Yang W, Guo Y, Fang L, Chen Y, et al. . ASCA, ANCA, ALCA and many more: are they useful in the diagnosis of inflammatory bowel disease? Dig Dis. (2016) 34:90–7. 10.1159/000442934
    1. Rieder F, Schleder S, Wolf A, Dirmeier A, Strauch U, Obermeier F, et al. . Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn's disease behavior. Inflamm Bowel Dis. (2010) 16:263–74. 10.1002/ibd.21046
    1. Caneparo V, Pastorelli L, Pisani LF, Bruni B, Prodam F, Boldorini R, et al. . Distinct Anti-IFI16 and anti-GP2 antibodies in inflammatory bowel disease and their variation with infliximab therapy. Inflamm Bowel Dis. (2016) 22:2977–87. 10.1097/MIB.0000000000000926
    1. Sachar DB. Role of biomarkers in the study and management of inflammatory bowel disease: a “nonsystematic” review. Inflamm Bowel Dis. (2014) 20:2511–18. 10.1097/MIB.0000000000000135
    1. Solem CA, Loftus EJ, Tremaine WJ, Harmsen WS, Zinsmeister AR, Sandborn WJ. Correlation of C-reactive protein with clinical, endoscopic, histologic, and radiographic activity in inflammatory bowel disease. Inflamm Bowel Dis. (2005) 11:707–12. 10.1097/01.MIB.0000173271.18319.53
    1. Tran DH, Wang J, Ha C, Ho W, Mattai SA, Oikonomopoulos A, et al. . Circulating cathelicidin levels correlate with mucosal disease activity in ulcerative colitis, risk of intestinal stricture in Crohn's disease, and clinical prognosis in inflammatory bowel disease. BMC Gastroenterol. (2017) 17:63. 10.1186/s12876-017-0619-4
    1. Nakov R, Velikova T, Nakov V, Ianiro G, Gerova V, Tankova L. Serum trefoil factor 3 predicts disease activity in patients with ulcerative colitis. Eur Rev Med Pharmacol Sci. (2019) 23:788. 10.26355/eurrev_201901_16893
    1. Lacruz-Guzman D, Torres-Moreno D, Pedrero F, Romero-Cara P, Garcia-Tercero I, Trujillo-Santos J, et al. . Influence of polymorphisms and TNF and IL1beta serum concentration on the infliximab response in Crohn's disease and ulcerative colitis. Eur J Clin Pharmacol. (2013) 69:431–8. 10.1007/s00228-012-1389-0
    1. Billiet T, Cleynen I, Ballet V, Claes K, Princen F, Singh S, et al. . Evolution of cytokines and inflammatory biomarkers during infliximab induction therapy and the impact of inflammatory burden on primary response in patients with Crohn's disease. Scand J Gastroenterol. (2017) 52:1086–92. 10.1080/00365521.2017.1339825
    1. Feng T, Chen B, Li L, Huang S, Ben-Horin S, Qiu Y, et al. Serum interleukin 9 levels predict disease severity and the clinical efficacy of infliximab in patients with Crohn's disease. Inflamm Bowel Dis. (2017) 23:1817–24. 10.1097/MIB.0000000000001172
    1. Baird AC, Mallon D, Radford-Smith G, Boyer J, Piche T, Prescott SL, et al. . Dysregulation of innate immunity in ulcerative colitis patients who fail anti-tumor necrosis factor therapy. World J Gastroenterol. (2016) 22:9104. 10.3748/wjg.v22.i41.9104
    1. Magnusson MK, Strid H, Isaksson S, Bajor A, Lasson A, Ung KA, et al. . Response to infliximab therapy in ulcerative colitis is associated with decreased monocyte activation, reduced CCL2 expression and downregulation of Tenascin C. J Crohns Colitis. (2015) 9:56–65. 10.1093/ecco-jcc/jju008
    1. Obraztsov IV, Shirokikh KE, Obraztsova OI, Shapina MV, Wang MH, Khalif IL. Multiple cytokine profiling: a new model to predict response to tumor necrosis factor antagonists in ulcerative colitis patients. Inflamm Bowel Dis. (2019) 25:524–31. 10.1093/ibd/izy358
    1. Sands BE, Chen J, Feagan BG, Penney M, Rees WA, Danese S, et al. . Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn's disease: a phase 2a study. Gastroenterology. (2017) 153:77–86. 10.1053/j.gastro.2017.03.049
    1. Bertani L, Baglietto L, Antonioli L, Fornai M, Tapete G, Albano E, et al. . Assessment of serum cytokines predicts clinical and endoscopic outcomes to vedolizumab in ulcerative colitis patients. Br J Clin Pharmacol. (2020). [Epub ahead of print]. 10.1111/bcp.14235
    1. Louis E, Belaiche J, van Kemseke C, Franchimont D, de Groote D, Gueenen V, et al. . A high serum concentration of interleukin-6 is predictive of relapse in quiescent Crohn's disease. Eur J Gastroenterol Hepatol. (1997) 9:939–44. 10.1097/00042737-199710000-00004
    1. Luo J, Wang Y, Lan D, Niu J, Miao J, Dong X, et al. . Differential expression of serum microRNAs in glucocorticoid-resistant patients with ulcerative colitis. Int J Clin Exp Pathol. (2018) 11:936.
    1. Chen D, Liu J, Zhao HY, Chen YP, Xiang Z, Jin X. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn's disease. World J Gastroenterol. (2016) 22:4716–31. 10.3748/wjg.v22.i19.4716
    1. Wang S, Hou Y, Chen W, Wang J, Xie W, Zhang X, et al. . KIF9AS1, LINC01272 and DIO3OS lncRNAs as novel biomarkers for inflammatory bowel disease. Mol Med Rep. (2018) 17:2195–202. 10.3892/mmr.2017.8118
    1. Williams HR, Willsmore JD, Cox IJ, Walker DG, Cobbold JF, Taylor-Robinson SD, et al. . Serum metabolic profiling in inflammatory bowel disease. Dig Dis Sci. (2012) 57:2157–65. 10.1007/s10620-012-2127-2
    1. Hisamatsu T, Okamoto S, Hashimoto M, Muramatsu T, Andou A, Uo M, et al. . Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS ONE. (2012) 7:e31131. 10.1371/journal.pone.0031131
    1. Ooi M, Nishiumi S, Yoshie T, Shiomi Y, Kohashi M, Fukunaga K, et al. . GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflamm Res. (2011) 60:831–40. 10.1007/s00011-011-0340-7
    1. Scoville EA, Allaman MM, Brown CT, Motley AK, Horst SN, Williams CS, et al. . Alterations in lipid, amino acid, and energy metabolism distinguish Crohn's disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics. (2018) 14:17. 10.1007/s11306-017-1311-y
    1. Kolho K, Pessia A, Jaakkola T, de Vos WM, Velagapudi V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J Crohn's Colitis. (2016) 11:321–34. 10.1093/ecco-jcc/jjw158
    1. Meuwis MA, Fillet M, Geurts P, de Seny D, Lutteri L, Chapelle JP, et al. . Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling. Biochem Pharmacol. (2007) 73:1422–33. 10.1016/j.bcp.2006.12.019
    1. Zhang F, Xu C, Ning L, Hu F, Shan G, Chen H, et al. . Correction: exploration of serum proteomic profiling and diagnostic model that differentiate Crohn's disease and intestinal tuberculosis. PLoS ONE. (2019) 14:e212300. 10.1371/journal.pone.0212300
    1. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. . Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet. (2016) 387:156–67. 10.1016/S0140-6736(15)00465-1
    1. Drobin K, Assadi G, Hong MG, Andersson E, Fredolini C, Forsstrom B, et al. . Targeted analysis of serum proteins encoded at known inflammatory bowel disease risk loci. Inflamm Bowel Dis. (2019) 25:306–16. 10.1093/ibd/izy326
    1. Frol'Ova L, Smetana KJ, Borovska D, Kitanovicova A, Klimesova K, Janatkova I, et al. . Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD? Inflamm Res. (2009) 58:503–12. 10.1007/s00011-009-0016-8
    1. Yu TB, Dodd S, Yu L, Subramanian S. Serum galectins as potential biomarkers of inflammatory bowel diseases. PLOS ONE. (2020) 15:e227306. 10.1371/journal.pone.0227306
    1. Nielsen OH, Rejnmark L, Moss AC. Role of vitamin D in the natural history of inflammatory bowel disease. J Crohns Colitis. (2018) 12:742–52. 10.1093/ecco-jcc/jjy025
    1. Zator ZA, Cantu SM, Konijeti GG, Nguyen DD, Sauk J, Yajnik V, et al. . Pretreatment 25-hydroxyvitamin D levels and durability of anti-tumor necrosis factor-alpha therapy in inflammatory bowel diseases. J Parenter Enteral Nutr. (2014) 38:385–91. 10.1177/0148607113504002
    1. Santos-Antunes J, Nunes AC, Lopes S, Macedo G. The relevance of vitamin D and antinuclear antibodies in patients with inflammatory bowel disease under anti-TNF treatment: a prospective study. Inflamm Bowel Dis. (2016) 22:1101–6. 10.1097/MIB.0000000000000697
    1. Reich KM, Fedorak RN, Madsen K, Kroeker KI. Role of vitamin D in infliximab-induced remission in adult patients with Crohn's Disease. Inflamm Bowel Dis. (2016) 22:92–9. 10.1097/MIB.0000000000000588
    1. West NR, Hegazy AN, Owens B, Bullers SJ, Linggi B, Buonocore S, et al. . Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. (2017) 23:579–89. 10.1038/nm.4307
    1. Verstockt S, Verstockt B, Vermeire S. Oncostatin M as a new diagnostic, prognostic and therapeutic target in Inflammatory Bowel Disease (IBD). Expert Opin Ther Targets. (2019) 23:943–54. 10.1080/14728222.2019.1677608
    1. Allan A, Wyke J, Allan RN, Morel P, Robinson M, Scott DL, et al. . Plasma fibronectin in Crohn's disease. Gut. (1989) 30:627–33. 10.1136/gut.30.5.627
    1. Verspaget HW, Biemond I, Allaart CF, van Weede H, Weterman IT, Gooszen HG, et al. . Assessment of plasma fibronectin in Crohn's disease. Hepatogastroenterology. (1991) 38:231–4.
    1. Koutroubakis IE, Petinaki E, Dimoulios P, Vardas E, Roussomoustakaki M, Maniatis AN, et al. . Serum laminin and collagen IV in inflammatory bowel disease. J Clin Pathol. (2003) 56:817–20. 10.1136/jcp.56.11.817
    1. Matusiewicz M, Neubauer K, Mierzchala-Pasierb M, Gamian A, Krzystek-Korpacka M. Matrix metalloproteinase-9: its interplay with angiogenic factors in inflammatory bowel diseases. Dis Mark. (2014) 2014:643645. 10.1155/2014/643645
    1. Kapsoritakis AN, Kapsoritaki AI, Davidi IP, Lotis VD, Manolakis AC, Mylonis PI, et al. . Imbalance of tissue inhibitors of metalloproteinases (TIMP) - 1 and - 4 serum levels, in patients with inflammatory bowel disease. BMC Gastroenterol. (2008) 8:55. 10.1186/1471-230X-8-55
    1. Carbone F, Bodini G, Brunacci M, Bonaventura A, Vecchie A, Liberale L, et al. . Reduction in TIMP-2 serum levels predicts remission of inflammatory bowel diseases. Eur J Clin Invest. (2018) 48:e13002. 10.1111/eci.13002
    1. De Simone M, Ciulla MM, Cioffi U, Poggi L, Oreggia B, Paliotti R, et al. . Effects of surgery on peripheral N-terminal propeptide of type III procollagen in patients with Crohn's disease. J Gastrointest Surg. (2007) 11:1361–4. 10.1007/s11605-007-0233-9
    1. Giuffrida P, Pinzani M, Corazza GR, Di Sabatino A. Biomarkers of intestinal fibrosis - one step towards clinical trials for stricturing inflammatory bowel disease. United European Gastroenterol J. (2016) 4:523–30. 10.1177/2050640616640160
    1. Ballengee CR, Stidham RW, Liu C, Kim M, Prince J, Mondal K, et al. . Association between plasma level of collagen type III alpha 1 chain and development of strictures in pediatric patients with Crohn's disease. Clin Gastroenterol Hepatol. (2019) 17:1799–806. 10.1016/j.cgh.2018.09.008
    1. Stidham RW, Wu J, Shi J, Lubman DM, Higgins P DR. Serum glycoproteome profiles for distinguishing intestinal fibrosis from inflammation in Crohn's disease. PLoS ONE. (2017) 12:e170506. 10.1371/journal.pone.0170506
    1. Di Sabatino A, Ciccocioppo R, Armellini E, Morera R, Ricevuti L, Cazzola P, et al. . Serum bFGF and VEGF correlate respectively with bowel wall thickness and intramural blood flow in Crohn's disease. Inflamm Bowel Dis. (2004) 10:573–7. 10.1097/00054725-200409000-00011
    1. Erzin Y, Uzun H, Karatas A, Celik AF. Serum YKL-40 as a marker of disease activity and stricture formation in patients with Crohn's disease. J Gastroenterol Hepatol. (2008) 23:e357–62. 10.1111/j.1440-1746.2007.05121.x
    1. Koutroubakis IE, Petinaki E, Dimoulios P, Vardas E, Roussomoustakaki M, Maniatis AN, et al. . Increased serum levels of YKL-40 in patients with inflammatory bowel disease. Int J Colorectal Dis. (2003) 18:254–9. 10.1007/s00384-002-0446-z
    1. Algaba A, Linares PM, Encarnacion FM, Figuerola A, Calvet X, Guerra I, et al. . The effects of infliximab or adalimumab on vascular endothelial growth factor and angiopoietin 1 angiogenic factor levels in inflammatory bowel disease: serial observations in 37 patients. Inflamm Bowel Dis. (2014) 20:695–702. 10.1097/MIB.0000000000000004
    1. Papp M, Lakatos PL. Serological Studies in Inflammatory Bowel Disease: How Important Are They? Curr Opin Gastroenterol. (2014) 30:359–64. 10.1097/MOG.0000000000000076
    1. Mitsuyama K, Niwa M, Takedatsu H, Yamasaki H, Kuwaki K, Yoshioka S, et al. . Antibody markers in the diagnosis of inflammatory bowel disease. World J Gastroenterol. (2016) 22:1304–10. 10.3748/wjg.v22.i3.1304
    1. Jansen A, Mandic AD, Bennek E, Frehn L, Verdier J, Tebrugge I, et al. . Anti-food and anti-microbial IgG subclass antibodies in inflammatory bowel disease. Scand J Gastroenterol. (2016) 51:1453–61. 10.1080/00365521.2016.1205130
    1. Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol. (2001) 96:730–4. 10.1111/j.1572-0241.2001.03613.x
    1. Dubinsky M, Braun J. Diagnostic and prognostic microbial biomarkers in inflammatory bowel diseases. Gastroenterology. (2015) 149:1265–74. 10.1053/j.gastro.2015.08.006
    1. Schulte-Pelkum J, Radice A, Norman GL, Lomicronpez HM, Lakos G, Buchner C, et al. . Novel clinical and diagnostic aspects of antineutrophil cytoplasmic antibodies. J Immunol Res. (2014) 2014:185416. 10.1155/2014/185416
    1. Vasseur F, Sendid B, Jouault T, Standaert-Vitse A, Dubuquoy L, Francois N, et al. . Variants of NOD1 and NOD2 genes display opposite associations with familial risk of Crohn's disease and anti-saccharomyces cerevisiae antibody levels. Inflamm Bowel Dis. (2012) 18:430–8. 10.1002/ibd.21817
    1. Annese V, Piepoli A, Perri F, Lombardi G, Latiano A, Napolitano G, et al. . Anti-Saccharomyces cerevisiae mannan antibodies in inflammatory bowel disease: comparison of different assays and correlation with clinical features. Aliment Pharmacol Ther. (2004) 20:1143–52. 10.1111/j.1365-2036.2004.02258.x
    1. Prideaux L, Kamm MA, De Cruz P, van Langenberg DR, Ng SC, Dotan I. Inflammatory bowel disease serology in Asia and the West. World J Gastroenterol. (2013) 19:6207–13. 10.3748/wjg.v19.i37.6207
    1. Joossens S, Reinisch W, Vermeire S, Sendid B, Poulain D, Peeters M, et al. . The value of serologic markers in indeterminate colitis: a prospective follow-up study. Gastroenterology. (2002) 122:1242–7. 10.1053/gast.2002.32980
    1. Reese GE, Constantinides VA, Simillis C, Darzi AW, Orchard TR, Fazio VW, et al. . Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Am J Gastroenterol. (2006) 101:2410–22. 10.1111/j.1572-0241.2006.00840.x
    1. Lee WI, Subramaniam K, Hawkins CA, Randall KL. The significance of ANCA positivity in patients with inflammatory bowel disease. Pathology. (2019) 51:634–9. 10.1016/j.pathol.2019.07.002
    1. Komorowski L, Teegen B, Probst C, Aulinger-Stocker K, Sina C, Fellermann K, et al. . Autoantibodies against exocrine pancreas in Crohn's disease are directed against two antigens: the glycoproteins CUZD1 and GP2. J Crohns Colitis. (2013) 7:780–90. 10.1016/j.crohns.2012.10.011
    1. Ohno H, Hase K. Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes. (2010) 1:407–10. 10.4161/gmic.1.6.14078
    1. Werner L, Paclik D, Fritz C, Reinhold D, Roggenbuck D, Sturm A. Identification of pancreatic glycoprotein 2 as an endogenous immunomodulator of innate and adaptive immune responses. J Immunol. (2012) 189:2774–83. 10.4049/jimmunol.1103190
    1. Pavlidis P, Shums Z, Koutsoumpas AL, Milo J, Papp M, Umemura T, et al. . Diagnostic and clinical significance of Crohn's disease-specific anti-MZGP2 pancreatic antibodies by a novel ELISA. Clin Chim Acta. (2015) 441:176–81. 10.1016/j.cca.2014.12.010
    1. Somma V, Ababneh H, Ababneh A, Gatti S, Romagnoli V, Bendia E, et al. . The novel Crohn's disease marker anti-GP2 antibody is associated with ileocolonic location of disease. Gastroenterol Res Pract. (2013) 2013:683824. 10.1155/2013/683824
    1. Roggenbuck D, Reinhold D, Werner L, Schierack P, Bogdanos DP, Conrad K. Glycoprotein 2 antibodies in Crohn's disease. Adv Clin Chem. (2013) 60:187–208. 10.1016/B978-0-12-407681-5.00006-4
    1. Papp M, Sipeki N, Tornai T, Altorjay I, Norman GL, Shums Z, et al. . Rediscovery of the anti-pancreatic antibodies and evaluation of their prognostic value in a prospective clinical cohort of Crohn's patients: the importance of specific target antigens [GP2 and CUZD1]. J Crohns Colitis. (2015) 9:659–68. 10.1093/ecco-jcc/jjv087
    1. Pavlidis P, Komorowski L, Teegen B, Liaskos C, Koutsoumpas AL, Smyk DS, et al. . Diagnostic and clinical significance of Crohn's disease-specific pancreatic anti-GP2 and anti-CUZD1 antibodies. Clin Chem Lab Med. (2016) 54:249–56. 10.1515/cclm-2015-0376
    1. Gross S, Bakker SF, van Bodegraven AA, van Hoogstraten IM, Gelderman KA, Bouma G, et al. . Increased IgA glycoprotein-2 specific antibody titres in refractory celiac disease. J Gastrointestin Liver Dis. (2014) 23:127–33. 10.15403/jgld.2014.1121.232.sg1
    1. Tornai T, Tornai D, Sipeki N, Tornai I, Alsulaimani R, Fechner K, et al. . Loss of tolerance to gut immunity protein, glycoprotein 2 (GP2) is associated with progressive disease course in primary sclerosing cholangitis. Sci Rep. (2018) 8:399. 10.1038/s41598-017-18622-1
    1. Kovacs G, Sipeki N, Suga B, Tornai T, Fechner K, Norman GL, et al. . Significance of serological markers in the disease course of ulcerative colitis in a prospective clinical cohort of patients. PLoS ONE. (2018) 13:e194166. 10.1371/journal.pone.0194166
    1. Conrad K, Roggenbuck D, Laass MW. Diagnosis and classification of ulcerative colitis. Autoimmun Rev. (2014) 13:463–6. 10.1016/j.autrev.2014.01.028
    1. Kaul A, Hutfless S, Liu L, Bayless TM, Marohn MR, Li X. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: a systematic review and meta-analysis. Inflamm Bowel Dis. (2012) 18:1872–84. 10.1002/ibd.22862
    1. Kugathasan S, Denson LA, Walters TD, Kim M, Marigorta UM, Schirmer M, et al. . Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. Lancet. (2017) 389:1710–18. 10.1016/S0140-6736(17)30317-3
    1. Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. (2017) 16:167–79. 10.1038/nrd.2016.117
    1. Beermann J, Piccoli M, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. (2016) 96:1297–325. 10.1152/physrev.00041.2015
    1. Haberman Y, Benshoshan M, Di Segni A, Dexheimer PJ, Braun T, Weiss B, et al. . Long ncRNA landscape in the ileum of treatment-naive early-onset Crohn disease. Inflamm Bowel Dis. (2018) 24:346–60. 10.1093/ibd/izx013
    1. Iborra M, Bernuzzi F, Correale C, Vetrano S, Fiorino G, Beltrán B, et al. . Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease. Clin Exp Immunol. (2013) 173:250–8. 10.1111/cei.12104
    1. Wang H, Zhang S, Yu Q, Yang G, Guo J, Li M, et al. . Circulating microRNA223 is a new biomarker for inflammatory bowel disease. Medicine. (2016) 95:e2703. 10.1097/MD.0000000000002703
    1. Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N, Gazouli M. Circulating MicroRNA in inflammatory bowel disease. J Crohn's Colitis. (2012) 6:900–4. 10.1016/j.crohns.2012.02.006
    1. Wu F, Guo NJ, Tian H, Marohn M, Gearhart S, Bayless TM, et al. . Peripheral blood MicroRNAs distinguish active ulcerative colitis and Crohn's disease. Inflamm Bowel Dis. (2011) 17:241–50. 10.1002/ibd.21450
    1. Zahm AM, Thayu M, Hand NJ, Horner A, Leonard MB, Friedman JR. Circulating MicroRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. (2011) 53:26–33. 10.1097/MPG.0b013e31822200cc
    1. Schonauen K, Le N, von Arnim U, Schulz C, Malfertheiner P, Link A. Circulating and Fecal microRNAs as biomarkers for inflammatory bowel diseases. Inflamm Bowel Dis. (2018) 24:1547–57. 10.1093/ibd/izy046
    1. Krissansen GW, Yang Y, Mcqueen FM, Leung E, Peek D, Chan YC, et al. . Overexpression of miR-595 and miR-1246 in the Sera of Patients with Active Forms of inflammatory bowel disease. Inflamm Bowel Dis. (2015) 21:520–30. 10.1097/MIB.0000000000000285
    1. Chen P, Li Y, Li L, Yu Q, Chao K, Zhou G, et al. . Circulating microRNA146b-5p is superior to C-reactive protein as a novel biomarker for monitoring inflammatory bowel disease. Aliment Pharmacol Ther. (2019) 49:733–43. 10.1111/apt.15159
    1. Nijhuis A, Biancheri P, Lewis A, Bishop CL, Giuffrida P, Chan C, et al. . In Crohn's disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clin Sci. (2014) 127:341–50. 10.1042/CS20140048
    1. Lewis A, Mehta S, Hanna LN, Rogalski LA, Jeffery R, Nijhuis A, et al. . Low serum levels of MicroRNA-19 are associated with a stricturing Crohn's disease phenotype. Inflamm Bowel Dis. (2015) 21:1926–34. 10.1097/MIB.0000000000000443
    1. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. (2010) 10:111–22. 10.1038/nri2708
    1. Wang H, Chao K, Ng SC, Bai AH, Yu Q, Yu J, et al. . Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol. (2016) 17:58. 10.1186/s13059-016-0901-8
    1. Williams MR, Stedtfeld RD, Tiedje JM, Hashsham SA. MicroRNAs-based inter-domain communication between the host and members of the gut microbiome. Front Microbiol. (2017) 8:1896. 10.3389/fmicb.2017.01896
    1. Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F, Darfeuille-Michaud A. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. (2014) 146:508–19. 10.1053/j.gastro.2013.10.021
    1. Li M, Zhang S, Qiu Y, He Y, Chen B, Mao R, et al. . Upregulation of miR-665 promotes apoptosis and colitis in inflammatory bowel disease by repressing the endoplasmic reticulum stress components XBP1 and ORMDL3. Cell Death Dis. (2017) 8:e2699. 10.1038/cddis.2017.76
    1. Whiteoak SR, Felwick R, Sanchez-Elsner T, Fraser CJ. MicroRNAs in inflammatory bowel diseases: paradoxes and possibilities. Inflamm Bowel Dis. (2015) 21:1160–5. 10.1097/MIB.0000000000000288
    1. Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, et al. . MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. (2008) 135:1624–35. 10.1053/j.gastro.2008.07.068
    1. Moret-Tatay I, Iborra M, Cerrillo E, Tortosa L, Nos P, Beltran B. Possible biomarkers in blood for crohn's disease: oxidative stress and micrornas-current evidences and further aspects to unravel. Oxid Med Cell Longev. (2016) 2016:2325162. 10.1155/2016/2325162
    1. Liu Y, Dong Y, Zhu X, Fan H, Xu M, Chen Q, et al. . MiR-155 inhibition ameliorates 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. Int Immunopharmacol. (2018) 64:401–10. 10.1016/j.intimp.2018.09.007
    1. Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: an interesting new story. J Cell Physiol. (2019) 234:3277–93. 10.1002/jcp.27173
    1. Thorlacius-Ussing G, Schnack NB, Andersen V, Holmstrom K, Pedersen AE. Expression and localization of miR-21 and miR-126 in mucosal tissue from patients with inflammatory bowel disease. Inflamm Bowel Dis. (2017) 23:739–52. 10.1097/MIB.0000000000001086
    1. Zacharopoulou E, Gazouli M, Tzouvala M, Vezakis A, Karamanolis G. The contribution of long non-coding RNAs in inflammatory bowel diseases. Dig Liver Dis. (2017) 49:1067–72. 10.1016/j.dld.2017.08.003
    1. Chen T, Xue H, Lin R, Huang Z. MiR-34c and PlncRNA1 mediated the function of intestinal epithelial barrier by regulating tight junction proteins in inflammatory bowel disease. Biochem Biophys Res Commun. (2017) 486:6–13. 10.1016/j.bbrc.2017.01.115
    1. Wu F, Huang Y, Dong F, Kwon JH. Ulcerative colitis-associated long noncoding RNA, BC012900, regulates intestinal epithelial cell apoptosis. Inflamm Bowel Dis. (2016) 22:782–95. 10.1097/MIB.0000000000000691
    1. Gharesouran J, Taheri M, Sayad A, Mazdeh M, Omrani MD. Integrative analysis of OIP5-AS1/HUR1 to discover new potential biomarkers and therapeutic targets in multiple sclerosis. J Cell Physiol. (2019) 234:17351–60. 10.1002/jcp.28355
    1. Kumar S, Williams D, Sur S, Wang JY, Jo H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol. (2019) 114:76–92. 10.1016/j.vph.2018.10.001
    1. Bolha L, Ravnik-Glavac M, Glavac D. Long noncoding RNAs as biomarkers in cancer. Dis Mark. (2017) 2017:7243968. 10.1155/2017/7243968
    1. De Preter V. Metabolomics in the clinical diagnosis of inflammatory bowel disease. Digest Dis. (2015) 33:2–10. 10.1159/000437033
    1. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. (2013) 56:131–42. 10.1007/s12026-013-8384-0
    1. Black S, Kushner I, Samols D. C-reactive Protein. J Biol Chem. (2004) 279:48487–90. 10.1074/jbc.R400025200
    1. Scharnhorst V, Noordzij PG, Lutz A, Graser U, Puntener D, Alquezar-Arbe A. A multicenter evaluation of a point of care CRP Test. Clin Biochem. (2019) 71:38–45. 10.1016/j.clinbiochem.2019.06.009
    1. Lewis JD. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology. (2011) 140:1817–26. 10.1053/j.gastro.2010.11.058
    1. Bohula EA, Giugliano RP, Cannon CP, Zhou J, Murphy SA, White JA, et al. . Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation. (2015) 132:1224–33. 10.1161/CIRCULATIONAHA.115.018381
    1. Zimmermann O, Li K, Zaczkiewicz M, Graf M, Liu Z, Torzewski J. C-reactive protein in human atherogenesis: facts and fiction. Mediators Inflamm. (2014) 2014:561428. 10.1155/2014/561428
    1. Zhou W, Sailani MR, Contrepois K, Zhou Y, Ahadi S, Leopold SR, et al. . Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. (2019) 569:663–71. 10.1038/s41586-019-1236-x
    1. Aleksandrova K, Boeing H, Nothlings U, Jenab M, Fedirko V, Kaaks R, et al. . Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology. (2014) 60:858–71. 10.1002/hep.27016
    1. Sharma V, Mandavdhare HS, Lamoria S, Singh H, Kumar A. Serial C-reactive protein measurements in patients treated for suspected abdominal tuberculosis. Dig Liver Dis. (2018) 50:559–62. 10.1016/j.dld.2017.12.008
    1. Fagan EA, Dyck RF, Maton PN, Hodgson HJ, Chadwick VS, Petrie A, et al. . Serum levels of C-reactive protein in Crohn's disease and ulcerative colitis. Eur J Clin Invest. (1982) 12:351–9. 10.1111/j.1365-2362.1982.tb02244.x
    1. Alper A, Zhang L, Pashankar DS. Correlation of erythrocyte sedimentation rate and C-reactive protein with pediatric inflammatory bowel disease activity. J Pediatr Gastroenterol Nutr. (2017) 65:e25–7. 10.1097/MPG.0000000000001444
    1. Suk DJ, Chasman DI, Cannon CP, Miller DT, Zee RY, Kozlowski P, et al. . Influence of genetic variation in the C-reactive protein gene on the inflammatory response during and after acute coronary ischemia. Ann Hum Genet. (2006) 70:705–16. 10.1111/j.1469-1809.2006.00272.x
    1. Siemons L, Ten KP, Vonkeman HE, van Riel PL, Glas CA, van de Laar MA. How age and sex affect the erythrocyte sedimentation rate and C-reactive protein in early rheumatoid arthritis. BMC Musculoskelet Disord. (2014) 15:368. 10.1186/1471-2474-15-368
    1. Fengming Y, Jianbing W. Biomarkers of inflammatory bowel disease. Dis Mark. (2014) 2014:710915. 10.1155/2014/710915
    1. Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, et al. . Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood. (2017) 129:2429–36. 10.1182/blood-2016-09-742296
    1. Sipponen T, Savilahti E, Kolho KL, Nuutinen H, Turunen U, Farkkila M. Crohn's disease activity assessed by fecal calprotectin and lactoferrin: correlation with Crohn's disease activity index and endoscopic findings. Inflamm Bowel Dis. (2008) 14:40–6. 10.1002/ibd.20312
    1. Suarez FC, Abadia BM, Martin AE, Jochems A, Garcia RL, Poza CJ, et al. . The use of serum calprotectin as a biomarker for inflammatory activity in inflammatory bowel disease. Rev Esp Enferm Dig. (2019) 111:744–9. 10.17235/reed.2019.5797/2018
    1. Bourgonje AR, Gabriëls RY, de Borst MH, Bulthuis MLC, Faber KN, van Goor H, et al. . Serum free thiols are superior to fecal calprotectin in reflecting endoscopic disease activity in inflammatory bowel disease. Antioxidants. (2019) 8:351. 10.3390/antiox8090351
    1. Xu M, Cen M, Chen X, Chen H, Liu X, Cao Q. Correlation between serological biomarkers and disease activity in patients with inflammatory bowel disease. Biomed Res Int. (2019) 2019:6517549. 10.1155/2019/6517549
    1. Martinez-Fierro ML, Garza-Veloz I, Rocha-Pizana MR, Cardenas-Vargas E, Cid-Baez MA, Trejo-Vazquez F, et al. . Serum cytokine, chemokine, and growth factor profiles and their modulation in inflammatory bowel disease. Medicine. (2019) 98:e17208. 10.1097/MD.0000000000017208
    1. Marafini I, Sedda S, Dinallo V, Monteleone G. Inflammatory cytokines: from discoveries to therapies in IBD. Expert Opin Biol Ther. (2019) 19:1207–17. 10.1080/14712598.2019.1652267
    1. Tew GW, Hackney JA, Gibbons D, Lamb CA, Luca D, Egen JG, et al. . Association between response to etrolizumab and expression of integrin alphaE and granzyme A in colon biopsies of patients with ulcerative colitis. Gastroenterology. (2016) 150:477–87. 10.1053/j.gastro.2015.10.041
    1. Sandborn WJ, Abreu MT, Dubinsky MC. A noninvasive method to assess mucosal healing in patients* with Crohn's disease. Gastroenterol Hepatol. (2018) 14(Suppl. 2):1–12.
    1. Nardone OM, Shivaji UN, Ferruzza V, Ghosh S, Iacucci M. Soluble blood markers of mucosal healing in inflammatory bowel disease: the future of noninvasive monitoring. Inflamm Bowel Dis. (2019). [Epub ahead of print]. 10.1093/ibd/izz226
    1. de Bruyn M, Ringold R, Martens E, Ferrante M, Van Assche G, Opdenakker G, et al. . The ulcerative colitis response index for detection of mucosal healing in patients treated with anti-tumour necrosis factor. J Crohns Colitis. (2020) 14:176–84. 10.1093/ecco-jcc/jjz125
    1. Caviezel D, Maissen S, Niess JH, Kiss C, Hruz P. High prevalence of vitamin D deficiency among patients with inflammatory bowel disease. Inflamm Intest Dis. (2018) 2:200–10. 10.1159/000489010
    1. Lin S, Wang Y, Li L, Chen P, Mao R, Feng R, et al. . A new model based on 25-hydroxyvitamin D3 for predicting active Crohn's disease in chinese patients. Mediat Inflamm. (2018) 2018:3275025. 10.1155/2018/3275025
    1. Lee KM, Jeen YT, Cho JY, Lee CK, Koo JS, Park DI, et al. . Efficacy, safety, and predictors of response to infliximab therapy for ulcerative colitis: a Korean multicenter retrospective study. J Gastroenterol Hepatol. (2013) 28:1829–33. 10.1111/jgh.12324
    1. Eriksson C, Marsal J, Bergemalm D, Vigren L, Bjork J, Eberhardson M, et al. . Long-term effectiveness of vedolizumab in inflammatory bowel disease: a national study based on the Swedish National Quality Registry for inflammatory bowel disease (SWIBREG). Scand J Gastroenterol. (2017) 52:722–9. 10.1080/00365521.2017.1304987
    1. Reinisch W, Wang Y, Oddens BJ, Link R. C-reactive protein, an indicator for maintained response or remission to infliximab in patients with Crohn's disease: a post-hoc analysis from ACCENTI. Aliment Pharmacol Ther. (2012) 35:568–76. 10.1111/j.1365-2036.2011.04987.x
    1. Magro F, Rodrigues-Pinto E, Santos-Antunes J, Vilas-Boas F, Lopes S, Nunes A, et al. . High C-reactive protein in Crohn's disease patients predicts nonresponse to infliximab treatment. J Crohns Colitis. (2014) 8:129–36. 10.1016/j.crohns.2013.07.005
    1. Kiss LS, Szamosi T, Molnar T, Miheller P, Lakatos L, Vincze A, et al. . Early clinical remission and normalisation of CRP are the strongest predictors of efficacy, mucosal healing and dose escalation during the first year of adalimumab therapy in Crohn's disease. Aliment Pharmacol Ther. (2011) 34:911–22. 10.1111/j.1365-2036.2011.04827.x
    1. Oussalah A, Evesque L, Laharie D, Roblin X, Boschetti G, Nancey S, et al. . A multicenter experience with infliximab for ulcerative colitis: outcomes and predictors of response, optimization, colectomy, and hospitalization. Am J Gastroenterol. (2010) 105:2617–25. 10.1038/ajg.2010.345
    1. Morita Y, Bamba S, Takahashi K, Imaeda H, Nishida A, Inatomi O, et al. . Prediction of clinical and endoscopic responses to anti-tumor necrosis factor-α antibodies in ulcerative colitis. Scand J Gastroenterol. (2016) 51:934–41. 10.3109/00365521.2016.1144781
    1. Gibson DJ, Elliott L, Mcdermott E, Tosetto M, Keegan D, Byrne K, et al. . Heightened expression of CD39 by regulatory T lymphocytes is associated with therapeutic remission in inflammatory bowel disease. Inflamm Bowel Dis. (2015) 21:2806–14. 10.1097/MIB.0000000000000566
    1. Schoenefuss F, Hoffmann P. Serum gamma-globulin and albumin concentrations predict secondary loss of response to anti-TNFalpha in inflammatory bowel disease patients. Eur J Gastroenterol Hepatol. (2019) 31:1563–8. 10.1097/MEG.0000000000001493
    1. Jurgens M, Laubender RP, Hartl F, Weidinger M, Seiderer J, Wagner J, et al. . Disease activity, ANCA, and IL23R genotype status determine early response to infliximab in patients with ulcerative colitis. Am J Gastroenterol. (2010) 105:1811–19. 10.1038/ajg.2010.95
    1. Nguyen DL, Nguyen ET, Bechtold ML. pANCA positivity predicts lower clinical response to infliximab therapy among patients with IBD. South Med J. (2015) 108:139–43. 10.14423/SMJ.0000000000000253
    1. Ferrante M, Vermeire S, Katsanos KH, Noman M, Van Assche G, Schnitzler F, et al. . Predictors of early response to infliximab in patients with ulcerative colitis. Inflamm Bowel Dis. (2007) 13:123–8. 10.1002/ibd.20054
    1. Bjerrum JT, Steenholdt C, Ainsworth M, Nielsen OH, Reed MA, Atkins K, et al. . Metabonomics uncovers a reversible proatherogenic lipid profile during infliximab therapy of inflammatory bowel disease. BMC Med. (2017) 15:184. 10.1186/s12916-017-0949-7
    1. Choung RS, Princen F, Stockfisch TP, Torres J, Maue AC, Porter CK, et al. . Serologic microbial associated markers can predict Crohn's disease behaviour years before disease diagnosis. Aliment Pharmacol Ther. (2016) 43:1300–10. 10.1111/apt.13641
    1. Ippolito C, Colucci R, Segnani C, Errede M, Girolamo F, Virgintino D, et al. . Fibrotic and vascular remodelling of colonic wall in patients with active ulcerative colitis. J Crohns Colitis. (2016) 10:1194–204. 10.1093/ecco-jcc/jjw076
    1. Rieder F, de Bruyn JR, Pham BT, Katsanos K, Annese V, Higgins PD, et al. . Results of the 4th scientific workshop of the ECCO (Group II): markers of intestinal fibrosis in inflammatory bowel disease. J Crohns Colitis. (2014) 8:1166–78. 10.1016/j.crohns.2014.03.009
    1. Zidar N, Bostjancic E, Jerala M, Kojc N, Drobne D, Stabuc B, et al. . Down-regulation of microRNAs of the miR-200 family and up-regulation of Snail and Slug in inflammatory bowel diseases - hallmark of epithelial-mesenchymal transition. J Cell Mol Med. (2016) 20:1813–20. 10.1111/jcmm.12869
    1. Lewis A, Nijhuis A, Mehta S, Kumagai T, Feakins R, Lindsay JO, et al. . Intestinal Fibrosis in Crohn's Disease. Inflamm Bowel Dis. (2015) 21:1141–50. 10.1097/MIB.0000000000000298

Source: PubMed

3
Se inscrever