Development and Validation of a Comprehensive Model to Estimate Early Allograft Failure Among Patients Requiring Early Liver Retransplant

Alfonso W Avolio, Antonio Franco, Andrea Schlegel, Quirino Lai, Sonia Meli, Patrizia Burra, Damiano Patrono, Matteo Ravaioli, Domenico Bassi, Fabio Ferla, Duilio Pagano, Paola Violi, Stefania Camagni, Daniele Dondossola, Roberto Montalti, Wasfi Alrawashdeh, Alessandro Vitale, Luciana Teofili, Gabriele Spoletini, Paolo Magistri, Marco Bongini, Massimo Rossi, Vincenzo Mazzaferro, Fabrizio Di Benedetto, John Hammond, Marco Vivarelli, Salvatore Agnes, Michele Colledan, Amedeo Carraro, Matteo Cescon, Luciano De Carlis, Lucio Caccamo, Salvatore Gruttadauria, Paolo Muiesan, Umberto Cillo, Renato Romagnoli, Paolo De Simone, Alfonso W Avolio, Antonio Franco, Andrea Schlegel, Quirino Lai, Sonia Meli, Patrizia Burra, Damiano Patrono, Matteo Ravaioli, Domenico Bassi, Fabio Ferla, Duilio Pagano, Paola Violi, Stefania Camagni, Daniele Dondossola, Roberto Montalti, Wasfi Alrawashdeh, Alessandro Vitale, Luciana Teofili, Gabriele Spoletini, Paolo Magistri, Marco Bongini, Massimo Rossi, Vincenzo Mazzaferro, Fabrizio Di Benedetto, John Hammond, Marco Vivarelli, Salvatore Agnes, Michele Colledan, Amedeo Carraro, Matteo Cescon, Luciano De Carlis, Lucio Caccamo, Salvatore Gruttadauria, Paolo Muiesan, Umberto Cillo, Renato Romagnoli, Paolo De Simone

Abstract

Importance: Expansion of donor acceptance criteria for liver transplant increased the risk for early allograft failure (EAF), and although EAF prediction is pivotal to optimize transplant outcomes, there is no consensus on specific EAF indicators or timing to evaluate EAF. Recently, the Liver Graft Assessment Following Transplantation (L-GrAFT) algorithm, based on aspartate transaminase, bilirubin, platelet, and international normalized ratio kinetics, was developed from a single-center database gathered from 2002 to 2015.

Objective: To develop and validate a simplified comprehensive model estimating at day 10 after liver transplant the EAF risk at day 90 (the Early Allograft Failure Simplified Estimation [EASE] score) and, secondarily, to identify early those patients with unsustainable EAF risk who are suitable for retransplant.

Design, setting, and participants: This multicenter cohort study was designed to develop a score capturing a continuum from normal graft function to nonfunction after transplant. Both parenchymal and vascular factors, which provide an indication to list for retransplant, were included among the EAF determinants. The L-GrAFT kinetic approach was adopted and modified with fewer data entries and novel variables. The population included 1609 patients in Italy for the derivation set and 538 patients in the UK for the validation set; all were patients who underwent transplant in 2016 and 2017.

Main outcomes and measures: Early allograft failure was defined as graft failure (codified by retransplant or death) for any reason within 90 days after transplant.

Results: At day 90 after transplant, the incidence of EAF was 110 of 1609 patients (6.8%) in the derivation set and 41 of 538 patients (7.6%) in the external validation set. Median (interquartile range) ages were 57 (51-62) years in the derivation data set and 56 (49-62) years in the validation data set. The EASE score was developed through 17 entries derived from 8 variables, including the Model for End-stage Liver Disease score, blood transfusion, early thrombosis of hepatic vessels, and kinetic parameters of transaminases, platelet count, and bilirubin. Donor parameters (age, donation after cardiac death, and machine perfusion) were not associated with EAF risk. Results were adjusted for transplant center volume. In receiver operating characteristic curve analyses, the EASE score outperformed L-GrAFT, Model for Early Allograft Function, Early Allograft Dysfunction, Eurotransplant Donor Risk Index, donor age × Model for End-stage Liver Disease, and Donor Risk Index scores, estimating day 90 EAF in 87% (95% CI, 83%-91%) of cases in both the derivation data set and the internal validation data set. Patients could be stratified in 5 classes, with those in the highest class exhibiting unsustainable EAF risk.

Conclusions and relevance: This study found that the developed EASE score reliably estimated EAF risk. Knowledge of contributing factors may help clinicians to mitigate risk factors and guide them through the challenging clinical decision to allocate patients to early liver retransplant. The EASE score may be used in translational research across transplant centers.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Burra reported receiving personal fees and nonfinancial support from Biotest and from Kedrion; nonfinancial support from Chiesi farmaceutici; and personal fees and nonfinancial support from Astellas Pharma outside the submitted work. Dr Carraro reported receiving personal fees from Novartis outside the submitted work. No other disclosures were reported.

Figures

Figure 1.. Patient Flow Diagram
Figure 1.. Patient Flow Diagram
Patients accrued in the derivation and external validation sets are displayed separately. AST represents aspartate aminotransferase; PLT, platelet count. aIncluded were 7 high-volume transplant centers and 7 intermediate-volume centers. During the 11- to 90-day period, 1 patient in the derivation set was lost to follow-up. During the 91- to 730-day period (24 months), 5 patients were lost to follow-up. bIncluded were 1 high-volume transplant center and 1 intermediate volume center.
Figure 2.. Receiver Operating Characteristic (ROC) Curves
Figure 2.. Receiver Operating Characteristic (ROC) Curves
A, B. The ROC curves for the Early Allograft Failure Simplified Estimation (EASE) score (final model 9) and other models (5, 6, 7, and 8) at 90 days in the derivation set and in the external validation set. C, The ROC curves in the derivation set. D, The ROC curves for the EASE score developed at 90 days and applied at 30 days and for other estimated scores in the derivation. D-MELD indicates donor age × Model for End-stage Liver Disease; DRI, Donor Risk Index; EAD, Early Allograft Dysfunction; L-GrAFT, Liver Graft Assessment Following Transplantation; MEAF, Model for Early Allograft Function; and New ET-DRI, New Eurotransplant Donor Risk Index.
Figure 3.. Early Allograft Failure Simplified Estimation…
Figure 3.. Early Allograft Failure Simplified Estimation (EASE) Score and Kaplan-Meier Survival Curves
A, Sigmoidal day 90 early allograft failure (EAF) distribution according to the EASE score in 1609 evaluated patients. Five different risk classes are identified, with the dashed central line denoting the threshold for an unsustainable EAF risk. The constant obtained by logistic regression analysis was increased by 0.3060 to calibrate the unsustainable risk cutoff at the 0 threshold. B and C, Early allograft failure–free graft survival and patient survival according to the 5 EASE score risk classes are shown. The dashed line between classes 4 and 5 in panel C representing the extremely high-risk threshold (unsustainable risk cutoff) indicates the poor survival of patients in extremely high-risk class 5. The extremely high-risk class and the unsustainable risk cutoff indicate the threshold that mandates prompt retransplant.

References

    1. Ploeg RJ, D’Alessandro AM, Knechtle SJ, et al. . Risk factors for primary dysfunction after liver transplantation—a multivariate analysis. Transplantation. 1993;55(4):807-813. doi:10.1097/00007890-199304000-00024
    1. González FX, Rimola A, Grande L, et al. . Predictive factors of early postoperative graft function in human liver transplantation. Hepatology. 1994;20(3):565-573. doi:10.1002/hep.1840200304
    1. Deschênes M, Belle SH, Krom RA, Zetterman RK, Lake JR; National Institute of Diabetes and Digestive and Kidney Diseases Liver Transplantation Database . Early allograft dysfunction after liver transplantation: a definition and predictors of outcome. Transplantation. 1998;66(3):302-310. doi:10.1097/00007890-199808150-00005
    1. Rosen HR, Martin P, Goss J, et al. . Significance of early aminotransferase elevation after liver transplantation. Transplantation. 1998;65(1):68-72. doi:10.1097/00007890-199801150-00013
    1. Briceño J, Ciria R, de la Mata M, Rufián S, López-Cillero P. Prediction of graft dysfunction based on extended criteria donors in the model for end-stage liver disease score era. Transplantation. 2010;90(5):530-539. doi:10.1097/TP.0b013e3181e86b11
    1. Feng S, Goodrich NP, Bragg-Gresham JL, et al. . Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant. 2006;6(4):783-790. doi:10.1111/j.1600-6143.2006.01242.x
    1. Nocito A, El-Badry AM, Clavien PA. When is steatosis too much for transplantation? J Hepatol. 2006;45(4):494-499. doi:10.1016/j.jhep.2006.07.017
    1. Lee DD, Singh A, Burns JM, Perry DK, Nguyen JH, Taner CB. Early allograft dysfunction in liver transplantation with donation after cardiac death donors results in inferior survival. Liver Transpl. 2014;20(12):1447-1453. doi:10.1002/lt.23985
    1. Ghinolfi D, Marti J, De Simone P, et al. . Use of octogenarian donors for liver transplantation: a survival analysis. Am J Transplant. 2014;14(9):2062-2071. doi:10.1111/ajt.12843
    1. Laing RW, Scalera I, Isaac J, et al. . Liver transplantation using grafts from donors after circulatory death: a propensity score-matched study from a single center. Am J Transplant. 2016;16(6):1795-1804. doi:10.1111/ajt.13699
    1. de Rougemont O, Breitenstein S, Leskosek B, et al. . One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Ann Surg. 2009;250(5):674-683. doi:10.1097/SLA.0b013e3181bcb1ee
    1. De Carlis R, Di Sandro S, Lauterio A, et al. . Successful donation after cardiac death liver transplants with prolonged warm ischemia time using normothermic regional perfusion. Liver Transpl. 2017;23(2):166-173. doi:10.1002/lt.24666
    1. Nasralla D, Coussios CC, Mergental H, et al. ; Consortium for Organ Preservation in Europe . A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557(7703):50-56. doi:10.1038/s41586-018-0047-9
    1. Schlegel A, Muller X, Kalisvaart M, et al. . Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J Hepatol. 2019;70(1):50-57. doi:10.1016/j.jhep.2018.10.005
    1. Hessheimer AJ, Coll E, Torres F, et al. . Normothermic regional perfusion vs. super-rapid recovery in controlled donation after circulatory death liver transplantation. J Hepatol. 2019;70(4):658-665. doi:10.1016/j.jhep.2018.12.013
    1. Olthoff KM, Kulik L, Samstein B, et al. . Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010;16(8):943-949. doi:10.1002/lt.22091
    1. Pareja E, Cortes M, Hervás D, et al. . A score model for the continuous grading of early allograft dysfunction severity. Liver Transpl. 2015;21(1):38-46. doi:10.1002/lt.23990
    1. Avolio AW, Agnes S, Chirico AS, Castagneto M. Primary dysfunction after liver transplantation: donor or recipient fault? Transplant Proc. 1999;31(1-2):434-436. doi:10.1016/S0041-1345(98)01694-7
    1. Yersiz H, Shaked A, Olthoff K, et al. . Correlation between donor age and the pattern of liver graft recovery after transplantation. Transplantation. 1995;60(8):790-794. doi:10.1097/00007890-199510270-00005
    1. Agopian VG, Harlander-Locke MP, Markovic D, et al. . Evaluation of early allograft function using the Liver Graft Assessment Following Transplantation risk score model. JAMA Surg. 2018;153(5):436-444. doi:10.1001/jamasurg.2017.5040
    1. Henry SD, Nachber E, Tulipan J, et al. . Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. Am J Transplant. 2012;12(9):2477-2486. doi:10.1111/j.1600-6143.2012.04086.x
    1. Dar WA, Sullivan E, Bynon JS, Eltzschig H, Ju C. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms. Liver Int. 2019;39(5):788-801. doi:10.1111/liv.14091
    1. Berumen J, Hemming A. Liver retransplantation: how much is too much? Clin Liver Dis. 2017;21(2):435-447. doi:10.1016/j.cld.2016.12.013
    1. Zarrinpar A, Hong JC. What is the prognosis after retransplantation of the liver? Adv Surg. 2012;46:87-100. doi:10.1016/j.yasu.2012.03.005
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative . The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296. doi:10.1371/journal.pmed.0040296
    1. Early Allograft Failure Simplified Estimation (EASE) in Liver Transplantation (EASE). identifier: NCT03858088. Updated March 1, 2019. Accessed September 7, 2020.
    1. Axelrod DA, Guidinger MK, McCullough KP, Leichtman AB, Punch JD, Merion RM. Association of center volume with outcome after liver and kidney transplantation. Am J Transplant. 2004;4(6):920-927. doi:10.1111/j.1600-6143.2004.00462.x
    1. Burroughs AK, Sabin CA, Rolles K, et al. ; European Liver Transplant Association . 3-Month and 12-month mortality after first liver transplant in adults in Europe: predictive models for outcome. Lancet. 2006;367(9506):225-232. doi:10.1016/S0140-6736(06)68033-1
    1. Avolio AW, Cillo U, Salizzoni M, et al. ; Donor-to-Recipient Italian Liver Transplant (D2R-ILTx) Study Group . Balancing donor and recipient risk factors in liver transplantation: the value of D-MELD with particular reference to HCV recipients. Am J Transplant. 2011;11(12):2724-2736. doi:10.1111/j.1600-6143.2011.03732.x
    1. Braat AE, Blok JJ, Putter H, et al. ; European Liver and Intestine Transplant Association (ELITA) and Eurotransplant Liver Intestine Advisory Committee (ELIAC) . The Eurotransplant Donor Risk Index in liver transplantation: ET-DRI. Am J Transplant. 2012;12(10):2789-2796. doi:10.1111/j.1600-6143.2012.04195.x
    1. Blok JJ, Putter H, Metselaar HJ, et al. . Identification and validation of the predictive capacity of risk factors and models in liver transplantation over time. Transplant Direct. 2018;4(9):e382. doi:10.1097/TXD.0000000000000822
    1. Jochmans I, Fieuws S, Monbaliu D, Pirenne J. “Model for Early Allograft Function” outperforms “early allograft dysfunction” as a predictor of transplant survival. Transplantation. 2017;101(8):e258-e264. doi:10.1097/TP.0000000000001833
    1. Alkozai EM, Nijsten MW, de Jong KP, et al. . Immediate postoperative low platelet count is associated with delayed liver function recovery after partial liver resection. Ann Surg. 2010;251(2):300-306. doi:10.1097/SLA.0b013e3181b76557
    1. Takahashi K, Nagai S, Putchakayala KG, et al. . Prognostic impact of postoperative low platelet count after liver transplantation. Clin Transplant. 2017;31(3):31. doi:10.1111/ctr.12891
    1. Avolio AW, Agnes S, Magalini SC, Foco M, Castagneto M. Importance of donor blood chemistry data (AST, serum sodium) in predicting liver transplant outcome. Transplant Proc. 1991;23(5):2451-2452.
    1. Olthof PB, Huiskens J, Schulte NR, et al. . Postoperative peak transaminases correlate with morbidity and mortality after liver resection. HPB (Oxford). 2016;18(11):915-921. doi:10.1016/j.hpb.2016.07.016
    1. Doyle HR, Morelli F, McMichael J, et al. . Hepatic retransplantation—an analysis of risk factors associated with outcome. Transplantation. 1996;61(10):1499-1505. doi:10.1097/00007890-199605270-00016
    1. Busuttil RW, Farmer DG, Yersiz H, et al. . Analysis of long-term outcomes of 3200 liver transplantations over two decades: a single-center experience. Ann Surg. 2005;241(6):905-916. doi:10.1097/01.sla.0000164077.77912.98
    1. Avolio AW, Halldorson JB, Burra P, Dutkowski P, Agnes S, Clavien PA. Balancing utility and need by means of donor-to-recipient matching: a challenging problem. Am J Transplant. 2013;13(2):522-523. doi:10.1111/ajt.12031
    1. Hong JC, Kaldas FM, Kositamongkol P, et al. . Predictive index for long-term survival after retransplantation of the liver in adult recipients: analysis of a 26-year experience in a single center. Ann Surg. 2011;254(3):444-448. doi:10.1097/SLA.0b013e31822c5878
    1. Biggins SW. Futility and rationing in liver retransplantation: when and how can we say no? J Hepatol. 2012;56(6):1404-1411. doi:10.1016/j.jhep.2011.11.027
    1. Silberhumer GR, Pokorny H, Hetz H, et al. . Combination of extended donor criteria and changes in the Model for End-Stage Liver Disease score predict patient survival and primary dysfunction in liver transplantation: a retrospective analysis. Transplantation. 2007;83(5):588-592. doi:10.1097/01.tp.0000255319.07499.b7
    1. Avolio AW, Gaspari R, Teofili L, et al. . Postoperative respiratory failure in liver transplantation: risk factors and effect on prognosis. PLoS One. 2019;14(2):e0211678. doi:10.1371/journal.pone.0211678
    1. Croome KP, Marotta P, Wall WJ, et al. . Should a lower quality organ go to the least sick patient? Model For End-Stage Liver Disease score and Donor Risk Index as predictors of early allograft dysfunction. Transplant Proc. 2012;44(5):1303-1306. doi:10.1016/j.transproceed.2012.01.115
    1. Yu AJ, Inaba K, Biswas S, et al. . Supermassive transfusion: a 15-year single center experience and outcomes. Am Surg. 2018;84(10):1617-1621. doi:10.1177/000313481808401016
    1. Mourad MM, Liossis C, Gunson BK, et al. . Etiology and management of hepatic artery thrombosis after adult liver transplantation. Liver Transpl. 2014;20(6):713-723. doi:10.1002/lt.23874
    1. Bekker J, Ploem S, de Jong KP. Early hepatic artery thrombosis after liver transplantation: a systematic review of the incidence, outcome and risk factors. Am J Transplant. 2009;9(4):746-757. doi:10.1111/j.1600-6143.2008.02541.x
    1. Petrowsky H, Rana A, Kaldas FM, et al. . Liver transplantation in highest acuity recipients: identifying factors to avoid futility. Ann Surg. 2014;259(6):1186-1194. doi:10.1097/SLA.0000000000000265
    1. Michard B, Artzner T, Lebas B, et al. . Liver transplantation in critically ill patients: preoperative predictive factors of post-transplant mortality to avoid futility. Clin Transplant. 2017;31(12):e13115. doi:10.1111/ctr.13115
    1. Volk ML, Goodrich N, Lai JC, Sonnenday C, Shedden K. Decision support for organ offers in liver transplantation. Liver Transpl. 2015;21(6):784-791. doi:10.1002/lt.24113
    1. Neuberger J, James O. Guidelines for selection of patients for liver transplantation in the era of donor-organ shortage. Lancet. 1999;354(9190):1636-1639. doi:10.1016/S0140-6736(99)90002-8
    1. Avolio AW, Agnes S, Cillo U, et al. . , the Italian survival calculator to optimize donor to recipient matching and to identify the unsustainable matches in liver transplantation. Transpl Int. 2012;25(3):294-301. doi:10.1111/j.1432-2277.2011.01423.x
    1. Li Z, Sun YM, Wu FX, Yang LQ, Lu ZJ, Yu WF. Controlled low central venous pressure reduces blood loss and transfusion requirements in hepatectomy. World J Gastroenterol. 2014;20(1):303-309. doi:10.3748/wjg.v20.i1.303
    1. Avolio AW, Agnes S, Chirico AS, Cillo U, Frongillo F, Castagneto M. Successful transplantation of an injured liver. Transplant Proc. 2000;32(1):131-133. doi:10.1016/S0041-1345(99)00910-0

Source: PubMed

3
Se inscrever