Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data

Dmitry Shungin, Simon Haworth, Kimon Divaris, Cary S Agler, Yoichiro Kamatani, Myoung Keun Lee, Kelsey Grinde, George Hindy, Viivi Alaraudanjoki, Paula Pesonen, Alexander Teumer, Birte Holtfreter, Saori Sakaue, Jun Hirata, Yau-Hua Yu, Paul M Ridker, Franco Giulianini, Daniel I Chasman, Patrik K E Magnusson, Takeaki Sudo, Yukinori Okada, Uwe Völker, Thomas Kocher, Vuokko Anttonen, Marja-Liisa Laitala, Marju Orho-Melander, Tamar Sofer, John R Shaffer, Alexandre Vieira, Mary L Marazita, Michiaki Kubo, Yasushi Furuichi, Kari E North, Steve Offenbacher, Erik Ingelsson, Paul W Franks, Nicholas J Timpson, Ingegerd Johansson, Dmitry Shungin, Simon Haworth, Kimon Divaris, Cary S Agler, Yoichiro Kamatani, Myoung Keun Lee, Kelsey Grinde, George Hindy, Viivi Alaraudanjoki, Paula Pesonen, Alexander Teumer, Birte Holtfreter, Saori Sakaue, Jun Hirata, Yau-Hua Yu, Paul M Ridker, Franco Giulianini, Daniel I Chasman, Patrik K E Magnusson, Takeaki Sudo, Yukinori Okada, Uwe Völker, Thomas Kocher, Vuokko Anttonen, Marja-Liisa Laitala, Marju Orho-Melander, Tamar Sofer, John R Shaffer, Alexandre Vieira, Mary L Marazita, Michiaki Kubo, Yasushi Furuichi, Kari E North, Steve Offenbacher, Erik Ingelsson, Paul W Franks, Nicholas J Timpson, Ingegerd Johansson

Abstract

Dental caries and periodontitis account for a vast burden of morbidity and healthcare spending, yet their genetic basis remains largely uncharacterized. Here, we identify self-reported dental disease proxies which have similar underlying genetic contributions to clinical disease measures and then combine these in a genome-wide association study meta-analysis, identifying 47 novel and conditionally-independent risk loci for dental caries. We show that the heritability of dental caries is enriched for conserved genomic regions and partially overlapping with a range of complex traits including smoking, education, personality traits and metabolic measures. Using cardio-metabolic traits as an example in Mendelian randomization analysis, we estimate causal relationships and provide evidence suggesting that the processes contributing to dental caries may have undesirable downstream effects on health.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Estimated heritability of and genetic correlation between measures of dental disease. a estimated heritability (h2LDSR) for each trait in GLIDE (plotted in circles) and UKB (plotted in triangles). Error bars represent 95% confidence intervals. b Estimated genetic correlations (Rg) between traits in GLIDE and UKB. Cells are shaded according to the value of Rg
Fig. 2
Fig. 2
Single-variant results in combined analysis of GLIDE and UKB. a Manhattan plot of the DMFS/dentures combined analysis. The red line indicates the threshold for genome-wide significance at (P = 5 × 10−8), and the black line indicates a suggestive threshold for association at (P = 1 × 10−5). Loci achieving genome-wide significance in the combined analysis (Z-test) are coloured in magenta. P-values for the same loci are shown in blue for dentures in UKB and yellow for DMFS in GLIDE. b Concordance of genetic effects in the DMFS/dentures combined analysis. Each point represents a conditionally independent signal of association (P < 5 × 10−8). c Manhattan plot of the periodontitis/loose teeth combined analysis. The red line indicates the threshold for genome-wide significance at (P = 5 × 10−8), and the black line indicates a suggestive threshold for association at (P = 1 × 10−5). The single-locus meeting this threshold is coloured in magenta. P-values for the same locus are shown in yellow for periodontitis in GLIDE, and blue for loose teeth in UKB. d Concordance in genetic effects in the periodontitis/loose teeth combined analysis. The magenta point represents the single locus with P < 5 × 10−8, grey points represent conditionally independent suggestively associated loci with P < 1 × 10−5 in combined analysis
Fig. 3
Fig. 3
Estimated genetic correlations between DMFS/dentures and health traits or outcomes. Markers indicate the estimated magnitude of Rg, error bars represent 95% confidence intervals (1.96* LDSR standard errors on either side of the point estimate)
Fig. 4
Fig. 4
Estimated genetic correlations between periodontitis/loose teeth and health traits or outcomes. Markers indicate the estimated magnitude of Rg, error bars represent 95% confidence intervals (1.96* LDSR standard errors on either side of the point estimate)

References

    1. GBD 2016 Disease and Injury Incidence and Prevalence Collabarators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–1259. doi: 10.1016/S0140-6736(17)32154-2.
    1. Vos T, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–2196. doi: 10.1016/S0140-6736(12)61729-2.
    1. Righolt AJ, Jevdjevic M, Marcenes W, Listl S. Global-, regional-, and country-level economic impacts of dental diseases in 2015. J. Dent. Res. 2018;97:501–507. doi: 10.1177/0022034517750572.
    1. Bretz WA, et al. Longitudinal analysis of heritability for dental caries traits. J. Dent. Res. 2005;84:1047–1051. doi: 10.1177/154405910508401115.
    1. Michalowicz BS, et al. Evidence of a substantial genetic basis for risk of adult periodontitis. J. Periodontol. 2000;71:1699–1707. doi: 10.1902/jop.2000.71.11.1699.
    1. Wang XJ, et al. Genome-wide association Scan of dental caries in the permanent dentition. Bmc Oral. Health. 2012;12:10. doi: 10.1186/1472-6831-12-57.
    1. Morrison J, et al. Genome-wide association study of dental caries in the Hispanic Communities Health Study/Study of Latinos (HCHS/SOL) Hum. Molec. Genet. 2016;25:807–816. doi: 10.1093/hmg/ddv506.
    1. Haworth S, et al. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum. Molec. Genet. 2018;27:3113–3127. doi: 10.1093/hmg/ddy237.
    1. Nibali L, Iorio AD, Tu YK, Vieira AR. Host genetics role in the pathogenesis of periodontal disease and caries. J. Clin. Periodontol. 2017;44:S52–S78. doi: 10.1111/jcpe.12639.
    1. Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 2017;19:110. doi: 10.1038/nrg.2017.101.
    1. Teumer A, et al. Genome-wide association study of chronic periodontitis in a general German population. J. Clin. Periodontol. 2013;40:977–985. doi: 10.1111/jcpe.12154.
    1. Shaffer JR, et al. Genome-wide association study of periodontal health measured by probing depth in adults ages 18–49 years. G3 (Bethesda) 2014;4:307–314. doi: 10.1534/g3.113.008755.
    1. Munz M, et al. A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Hum. Molec. Genet. 2018;26:2577–2588. doi: 10.1093/hmg/ddx151.
    1. Divaris K, et al. Genome-wide association study of periodontal pathogen colonization. J. Den. Res. 2012;91:S21–S28. doi: 10.1177/0022034512447951.
    1. Offenbacher S, et al. Genome-wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. Hum. Molec. Genet. 2016;25:2113–2129. doi: 10.1093/hmg/ddw069.
    1. Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 10.1038/s41586-018-0579-z.
    1. Horikoshi M, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538:248. doi: 10.1038/nature19806.
    1. Shungin D, et al. Using genetics to test the causal relationship of total adiposity and periodontitis: Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium. Int. J. Epidemiol. 2015;44:638–650. doi: 10.1093/ije/dyv075.
    1. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340.
    1. Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291-+. doi: 10.1038/ng.3211.
    1. Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47:1236-+. doi: 10.1038/ng.3406.
    1. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285. doi: 10.1038/nature19057.
    1. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017;8:1826. doi: 10.1038/s41467-017-01261-5.
    1. Staley JR, et al. PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics. 2016;32:3207–3209. doi: 10.1093/bioinformatics/btw373.
    1. Barbeira AN, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 2018;9:1825. doi: 10.1038/s41467-018-03621-1.
    1. Lonsdale J, et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 2013;45:580. doi: 10.1038/ng.2653.
    1. Reibring C-G, et al. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation. PloS One. 2014;9:96007–96007. doi: 10.1371/journal.pone.0096007.
    1. Hong JH, et al. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation. J. Physiol. 2015;593:5299–5312. doi: 10.1113/JP271378.
    1. Esberg A, Haworth S, Brunius C, Lif Holgerson P, Johansson I. Carbonic anhydrase 6 gene variation influences oral microbiota composition and caries risk in Swedish adolescents. Sci. Rep. 2019;9:452. doi: 10.1038/s41598-018-36832-z.
    1. Mitsiadis TA, Drouin J. Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Dev. Biol. 2008;313:887–896. doi: 10.1016/j.ydbio.2007.10.055.
    1. Pers TH, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 2015;6:9. doi: 10.1038/ncomms6890.
    1. Finucane HK, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 2015;47:1228. doi: 10.1038/ng.3404.
    1. Finucane HK, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 2018;50:621–629. doi: 10.1038/s41588-018-0081-4.
    1. Ozawa Y, Chiba J, Sakamoto S. HLA class II alleles and salivary numbers of mutans streptococci and lactobacilli among young adults in Japan. Oral. Micro Immunol. 2001;16:353–357. doi: 10.1034/j.1399-302X.2001.160606.x.
    1. Scannapieco Frank A, Bush Renee B, Paju S. Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke. A systematic review. Ann. Periodontol. 2017;8:38–53. doi: 10.1902/annals.2003.8.1.38.
    1. Ojima M, Amano A, Kurata S. Relationship between decayed teeth and metabolic syndrome: data from 4716 middle-aged male Japanese employees. J. Epidemiol. 2015;25:204–211. doi: 10.2188/jea.JE20140132.
    1. Vedin O, et al. Tooth loss is independently associated with poor outcomes in stable coronary heart disease. Eur. J. Prev. Cardiol. 2016;23:839–846. doi: 10.1177/2047487315621978.
    1. Liljestrand JM, et al. Missing teeth predict incident cardiovascular events, diabetes, and death. J. Dent. Res. 2015;94:1055–1062. doi: 10.1177/0022034515586352.
    1. Zheng J, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–279. doi: 10.1093/bioinformatics/btw613.
    1. Zhu Z, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 2018;9:224. doi: 10.1038/s41467-017-02317-2.
    1. Marioni RE, et al. GWAS on family history of Alzheimer’s disease. Transl. psychiatry. 2018;8:99–99. doi: 10.1038/s41398-018-0150-6.
    1. Järvinen E, et al. Continuous tooth generation in mouse is induced by activated epithelial Wnt/β-catenin signaling. Proc. Nat. Acad. Sci. 2006;103:18627–18632. doi: 10.1073/pnas.0607289103.
    1. Han N, et al. β-Catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2. PLoS ONE. 2014;9:e88890. doi: 10.1371/journal.pone.0088890.
    1. Chen J, Lan Y, Baek J-A, Gao Y, Jiang R. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev. Biol. 2009;334:174–185. doi: 10.1016/j.ydbio.2009.07.015.
    1. Jonsson L, et al. Rare and common variants conferring risk of tooth agenesis. J. Dent. Res. 2018;97:515–522. doi: 10.1177/0022034517750109.
    1. Bohring A, et al. WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am. J. Hum. Genet. 2009;85:97–105. doi: 10.1016/j.ajhg.2009.06.001.
    1. Kimura R, et al. Common polymorphisms in WNT10A affect tooth morphology as well as hair shape. Hum. Molec. Genet. 2015;24:2673–2680. doi: 10.1093/hmg/ddv014.
    1. Mucci LA, Bjorkman L, Douglass CW, Pedersen NL. Environmental and heritable factors in the etiology of oral diseases - a population-based study of Swedish twins. J. Dent. Res. 2005;84:800–805. doi: 10.1177/154405910508400904.
    1. Haworth S, et al. Tooth loss is a complex measure of oral disease: determinants and methodological considerations. Comm. Dent. Oral. Epidemiol. 2018;46:555–562. doi: 10.1111/cdoe.12391.
    1. Li B, et al. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression. Pac. Symp. Biocomput. 2018;23:448–459.
    1. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015;44:512–525. doi: 10.1093/ije/dyv080.
    1. O’Connor LJ, Price AL. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 2018;50:1728–1734. doi: 10.1038/s41588-018-0255-0.
    1. Conomos MatthewP, et al. Genetic diversity and association studies in US Hispanic/Latino populations: applications in the hispanic community health study/study of Latinos. Am. J. Hum. Genet. 2016;98:165–184. doi: 10.1016/j.ajhg.2015.12.001.
    1. Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. J. Periodontol. 2007;78:1387–1399. doi: 10.1902/jop.2007.060264.
    1. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann. Periodo. 1999;4:1–6. doi: 10.1902/annals.1999.4.1.1.
    1. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68. doi: 10.1038/nature15393.
    1. Winkler TW, et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 2014;9:1192–1212. doi: 10.1038/nprot.2014.071.
    1. Winkler TW, et al. EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data. Bioinformatics. 2015;31:259–261. doi: 10.1093/bioinformatics/btu621.
    1. Mitchell, R. E. et al. UK Biobank Genetic Data: MRC IEU Quality Control, version 2. 10.5523/bris.1ovaau5sxunp2cv8rcy88688v (2019).
    1. Loh P-R, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for biobank-scale datasets. Nat. Genet. 2018;50:906–908. doi: 10.1038/s41588-018-0144-6.
    1. Elsworth, B. et al. MRC IEU UK Biobank GWAS pipeline version 1. 10.5523/bris.2fahpksont1zi26xosyamqo8rr (2017).
    1. Yang J, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 2012;44:369. doi: 10.1038/ng.2213.
    1. Yang JA, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. doi: 10.1016/j.ajhg.2010.11.011.
    1. Barbeira AN, et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 2019;15:e1007889. doi: 10.1371/journal.pgen.1007889.
    1. Yengo L, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 2018;27:3641–3649. doi: 10.1093/hmg/ddy271.
    1. Shungin D, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–196. doi: 10.1038/nature14132.
    1. Nikpay M, et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015;47:1121-+. doi: 10.1038/ng.3396.
    1. Malik R, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 2018;50:524–537. doi: 10.1038/s41588-018-0058-3.
    1. Morris AP, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012;44:981–990. doi: 10.1038/ng.2383.
    1. Horikoshi M, et al. Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation. PLoS Genet. 2015;11:e1005230. doi: 10.1371/journal.pgen.1005230.
    1. Global Lipids Genetics, C. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013;45:1274. doi: 10.1038/ng.2797.
    1. Zhu Z, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016;48:481. doi: 10.1038/ng.3538.

Source: PubMed

3
Se inscrever