Pulse pressure and end-tidal carbon dioxide for monitoring low native cardiac output during veno-arterial ECLS: a prospective observational study

Marc Mourad, Jacob Eliet, Norddine Zeroual, Marine Saour, Pierre Sentenac, Federico Manna, Nicolas Molinari, Thomas Gandet, Pascal H Colson, Philippe Gaudard, Marc Mourad, Jacob Eliet, Norddine Zeroual, Marine Saour, Pierre Sentenac, Federico Manna, Nicolas Molinari, Thomas Gandet, Pascal H Colson, Philippe Gaudard

Abstract

Background: Veno-arterial extracorporeal life support (VA-ECLS) results in cardiopulmonary shunting with reduced native cardiac output (NCO). Low NCO occurrence is common and associated with risk of thromboembolic and pulmonary complications. Practical tools for monitoring NCO during VA-ECLS would therefore be valuable. Pulse pressure (PP) and end-tidal carbon dioxide (EtCO2) are known to be related to cardiac output. We have designed a study to test whether PP and EtCO2 were efficient for the monitoring of NCO during VA-ECLS.

Methods: In this prospective single-center observational study, patients who underwent a VA-ECLS for cardiogenic shock from January 2016 to October 2017 were included, provided low NCO was suspected by a PP < 20 mmHg. NCO was measured with pulmonary artery catheter or echocardiography and compared to PP and EtCO2. The ability of PP and EtCO2 to predict NCO < 1 L/min was evaluated with receiver operating characteristics (ROC) curves.

Results: Among the 106 patients treated with VA-ECLS for cardiogenic shock during the study period, 26 were studied, allowing the collection of 196 study points. PP and EtCO2 relationships with NCO were nonlinear and showed strong correlations for NCO < 2 L/min (r = 0.69 and r = 0.78 respectively). A PP < 15 mmHg and EtCO2 < 14 mmHg had good predictive values for detecting NCO < 1 L/min (area under ROC curve 0.93 [95% CI 0.89-0.96] and 0.97 [95% CI 0.94-0.99] respectively, p = 0.058).

Conclusions: PP and EtCO2 may offer an accurate real-time monitoring of low NCO events during VA-ECLS support. Further studies are needed to show if their utilization may help to implement therapeutic strategies in order to prevent thromboembolic and respiratory complications associated with VA-ECLS, and to improve patients' prognosis.

Trial registration: NCT03323268 , July 12, 2016.

Keywords: Cardiogenic shock; EtCO2; Pulse pressure; VA-ECLS support.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart. VA-ECLS, veno-arterial extracorporeal life support; PP, pulse pressure; PAC, pulmonary artery catheter; NCO, native cardiac output
Fig. 2
Fig. 2
Pulse pressure and EtCO2 relationships with native cardiac output and their determinants. Native cardiac output was assessed with pulmonary artery catheter or echocardiography at the same time as pulse pressure, end-tidal carbon dioxide (EtCO2), arterial carbon dioxide pressure (PaCO2), and heart rate. Figures consist of spline regression representations (cubic spline, P Bruce and Bruce 2017) of the relationships between a pulse pressure and native cardiac output, b pulse pressure and stroke volume, c EtCO2 and native cardiac output, and d PaCO2-EtCO2 gradient and native cardiac output. The variation of model performance according to the X was evaluated through prediction of the error model (p < 0.001, p < 0.001, p = 0.01, and p = 0.3 for figures a, b, c, and d respectively)
Fig. 3
Fig. 3
ROC AUCs of pulse pressure and EtCO2 for predicting native cardiac output < 1 L/min. ROC curve for pulse pressure (PP) in red and for end-tidal carbon dioxide (EtCO2) in black. Receiver operating characteristics (ROC) curves quantified by area under the curve (AUC) and 95% CI were obtained from 149 study points because 47 pulse pressure values were missing (patients on concomitant left VAD). p = 0.058 between ROC AUC of PP versus EtCO2 (Delong test)

References

    1. Stretch R, Sauer CM, Yuh DD, et al. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol. 2014;64:1407–1415. doi: 10.1016/j.jacc.2014.07.958.
    1. Combes A, Leprince P, Luyt C-E, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008;36:1404–1411. doi: 10.1097/CCM.0b013e31816f7cf7.
    1. Chen Y-S, Lin J-W, Yu H-Y, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet Lond Engl. 2008;372:554–561. doi: 10.1016/S0140-6736(08)60958-7.
    1. Vardi A, Jessen ME, Chao RY, et al. Effect of extracorporeal membrane oxygenation flow on pulmonary capillary blood flow. Crit Care Med. 1995;23:726–732. doi: 10.1097/00003246-199504000-00022.
    1. Williams B, Bernstein W. Review of venoarterial extracorporeal membrane oxygenation and development of intracardiac thrombosis in adult cardiothoracic patients. J Extra Corpor Technol. 2016;48:162–167.
    1. Unai S, Nguyen M-L, Tanaka D, et al. Clinical significance of spontaneous echo contrast on extracorporeal membrane oxygenation. Ann Thorac Surg. 2017;103:773–778. doi: 10.1016/j.athoracsur.2016.07.019.
    1. Koul B, Wollmer P, Willen H, et al. Venoarterial extracorporeal membrane oxygenation--how safe is it? Evaluation with a new experimental model. J Thorac Cardiovasc Surg. 1992;104:579–584. doi: 10.1016/S0022-5223(19)34721-X.
    1. Extracorporeal Life Support Organization: ELSO Adult Cardiac Failure Supplement to the ELSO General Guidelines v1.3. Ann Arbor; 2013. .
    1. Truby L, Hart S, Takeda K, et al. Management and outcome of left ventricular distention during venoarterial extracorporeal membrane oxygenation support. J Heart Lung Transplant. 2015;34:S83–S84. doi: 10.1016/j.healun.2015.01.221.
    1. Cevasco M, Takayama H, Ando M, et al. Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J Thorac Dis. 2019;11:1676–1683. doi: 10.21037/jtd.2019.03.29.
    1. Schrage B, Becher M, Schwarzl M, et al. Percutaneous unloading of the left ventricle during extracorporeal membrane oxygenation in cardiogenic shock - ongoing experience from a high-volume centre. J Heart Lung Transplant. 2018;37:S28. doi: 10.1016/j.healun.2018.01.047.
    1. Gaudard P, Mourad M, Eliet J, et al. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care Lond Engl. 2015;19:363. doi: 10.1186/s13054-015-1073-8.
    1. Mourad M, Gaudard P, De La Arena P, et al. Circulatory support with extracorporeal membrane oxygenation and/or Impella for cardiogenic shock during myocardial infarction. ASAIO J. 2018;64:708–714. doi: 10.1097/MAT.0000000000000704.
    1. Russo JJ, Aleksova N, Ian P, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol. 2019;73:654–662. doi: 10.1016/j.jacc.2018.10.085.
    1. Norris SL, King EG, Grace M, et al. Thermodilution cardiac output--an in vitro model of low flow states. Crit Care Med. 1986;14:57–59. doi: 10.1097/00003246-198601000-00013.
    1. Reuter DA, Huang C, Edrich T, et al. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811. doi: 10.1213/ANE.0b013e3181cc885a.
    1. Shibutani K, Muraoka M, Shirasaki S, et al. Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output? Anesth Analg. 1994;79:829–883. doi: 10.1213/00000539-199411000-00002.
    1. Maslow A, Stearns G, Bert A, et al. Monitoring end-tidal carbon dioxide during weaning from cardiopulmonary bypass in patients without significant lung disease. Anesth Analg. 2001;92:306–313. doi: 10.1213/00000539-200102000-00004.
    1. Eliet J, Gaudard P, Zeroual N, et al. Effect of Impella during veno-arterial extracorporeal membrane oxygenation on pulmonary artery flow as assessed by end-tidal carbon dioxide. ASAIO J. 2018;64:502–507. doi: 10.1097/MAT.0000000000000662.
    1. Schmidt M, Pellegrino V, Combes A, et al. Mechanical ventilation during extracorporeal membrane oxygenation. Crit Care Lond Engl. 2014;18:203. doi: 10.1186/cc13702.
    1. Peter Bruce, Andrew Bruce. Practical statistics for data scientists. Sebastopol: O’Reilly Media; 2017.
    1. Rao P, Khalpey Z, Smith R, Burkhoo D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. 2018;11:e004905. doi: 10.1161/CIRCHEARTFAILURE.118.004905.
    1. Park B-W, Seo D-C, Moon I-K, et al. Pulse pressure as a prognostic marker in patients receiving extracorporeal life support. Resuscitation. 2013;84:1404–1408. doi: 10.1016/j.resuscitation.2013.04.009.
    1. Weber C, Deppe A-C, Sabashnikov A, et al. Left ventricular thrombus formation in patients undergoing femoral veno-arterial extracorporeal membrane oxygenation. Perfusion. 2018;33:283–228. doi: 10.1177/0267659117745369.
    1. Madershahian N, Weber C, Scherner M, et al. Thrombosis of the aortic root and ascending aorta during extracorporeal membrane oxygenation. Intensive Care Med. 2014;40:432–443. doi: 10.1007/s00134-013-3173-8.
    1. Haller M, Zöllner C, Briegel J, et al. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23:860–866. doi: 10.1097/00003246-199505000-00014.
    1. Bachmann KF, Zwicker L, Nettelbeck K, Casoni D, Heinisch PP, Jenni H, Haenggi M, Berger D. Assessment of right heart function during extracorporeal therapy by modified thermodilution in a porcine model Anesthesiology 2020. No Pagination Specified. 10.1097/ALN.0000000000003443.
    1. Vennin S, Li Y, Willemet M, et al. Identifying hemodynamic determinants of pulse pressure. A combine numerical and physiological approach. Hypertension. 2017;70:1176–1182. doi: 10.1161/HYPERTENSIONAHA.117.09706.
    1. Lim HS. The effect of Impella CP on cardiopulmonary physiology during venoarterial extracorporeal membrane oxygenation support. Artif Organs. 2017;41:1109–1112. doi: 10.1111/aor.12923.
    1. Bachmann KF, Haenggi M, Jakob S, Takala J, Gattinoni L, Berger D. Gas exchange calculation may estimate changes in pulmonary blood flow during veno-arterial extracorporeal membrane oxygenation in a porcine model. Am J Physiol Lung Cell Mol Physiol. 2020;318:L1211–L1221. doi: 10.1152/ajplung.00167.2019.
    1. Downs JB. PaCO2, EtCO2 and gradient. In: CAPNOGRAPHY 2nd edition, Gravenstein JS, Jaffe MB, Gravenstein N, Paulus DA, editors. Cambridge: Cambridge University Press; 2011. p. 225–30.
    1. Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg. 1991;73:808–814. doi: 10.1213/00000539-199112000-00023.

Source: PubMed

3
Se inscrever