Resolution of lateral acoustic space assessed by electroencephalography and psychoacoustics

Jan Bennemann, Claudia Freigang, Erich Schröger, Rudolf Rübsamen, Nicole Richter, Jan Bennemann, Claudia Freigang, Erich Schröger, Rudolf Rübsamen, Nicole Richter

Abstract

The encoding of auditory spatial acuity (measured as the precision to distinguish between two spatially distinct stimuli) by neural circuits in both auditory cortices is a matter of ongoing research. Here, the event-related potential (ERP) mismatch negativity (MMN), a sensitive indicator of preattentive auditory change detection, was used to tap into the underlying mechanism of cortical representation of auditory spatial information. We characterized the MMN response affected by the degree of spatial deviance in lateral acoustic space using a passive oddball paradigm. Two stimulation conditions (SCs)-specifically focusing on the investigation of the mid- and far-lateral acoustic space-were considered: (1) 65° left standard position with deviant positions at 70, 75, and 80°; and (2) 95° left standard position with deviant positions at 90, 85, and 80°. Additionally, behavioral data on the minimum audible angle (MAA) were acquired for the respective standard positions (65, 95° left) to quantify spatial discrimination in separating distinct sound sources. The two measurements disclosed the linkage between the (preattentive) MMN response and the (attentive) behavioral threshold. At 65° spatial deviations as small as 5° reliably elicited MMNs. Thereby, the MMN amplitudes monotonously increased as a function of spatial deviation. At 95°, spatial deviations of 15° were necessary to elicit a valid MMN. The behavioral data, however, yielded no difference in mean MAA thresholds for position 65 and 95°. The different effects of laterality on MMN responses and MAA thresholds suggest a role of spatial selective attention mechanisms particularly relevant in active discrimination of neighboring sound sources, especially in the lateral acoustic space.

Keywords: auditory space processing; event-related potentials; minimal audible angle; mismatch negativity; sound localization; spatial resolution.

Figures

Figure 1
Figure 1
Stimulus design. Experimental setting for EEG (left) and MAA (right) experiments. Two different conditions (blue and orange) were tested differing in the position of the standard/reference stimulus (−65 or −95°, black loudspeaker symbols). In the EEG experiment a passive oddball-paradigm was used. Three location-deviant signals were presented in each condition (gray loudspeaker symbol) with the deviant position −80° being part of both experimental blocks. For MAA measurements, stimulus triplets composed of two reference stimuli and one test stimulus were presented with the position of the test stimulus randomly altered between the trials. Starting with a maximum deviation of 25°, the MAA was quantified using an adaptive 1up/1down procedure.
Figure 2
Figure 2
Event-related potentials to standard and deviant stimuli. Grand averaged EEG epochs recorded at Fz, see sketch of the view from above to the head. Left: stimulation condition SC65, 65° as standard (std), 70, 75, and 80° as deviants (−5, −10, and −15° deviation relative to std). Right: stimulation condition SC95, 95° as std, 90, 85, and 80° as deviants (+5, +10, and +15° deviation relative to std). Shadowed box depicts the (80–130 ms) N1 time window. The running t-test yielded no significant differences between standard and deviants (n = 17).
Figure 3
Figure 3
Re-referenced difference waveforms. Averaged difference waveforms (solid lines) at Fz re-referenced to mean ERP signal obtained at mastoid electrodes (dotted gray line). Left: deviations within the mid-lateral space (SC65) Right: deviations within the far-lateral space (SC95). The Magnitude of Deviation (MoD) relative to standard position is color-coded: blue ±5°, orange ±10°, green ±15°. Gray boxes indicate the 20 ms interval around the latency of the MMN peak in the re-referenced grand-averaged response which was used to test for statistical presence of MMN responses. Lower row: scalp distribution of the MMN amplitude for respective MoD, electrode sites with significant amplitudes (one-tailed t-test, p < 0.05) shown as red-edged dots; n = 17.
Figure 4
Figure 4
Dependence of MMN amplitude on magnitude of deviation. (A)Mismatch Negativity. Mean individual MMN amplitudes (n =17) within a ±10 ms time window around the individual MMN peak amplitude measured at electrode site Fz plotted against the Magnitude of Deviation, MoD, i.e., ±5°, ±10°, ±15° relative to 65° (left, SC65) and 95° (right, SC95) std position. Upper limit of 0.95 confidence intervals for the mean values are indicated as error bars. One-Way rmANVOA revealed a significant MoD-effect on MMN amplitude [F(2, 32) = 5.058, p = 0.012] in SC65. Post-hoc pairwise comparisons revealed higher amplitude for 15° deviation compared to 5° deviation and a tendency toward higher amplitudes for 10° compared to 5° deviation. */** significance at a level of p < 0.05/p < 0.01; #/## tendency p = 0.09/p = 0.08; +MMN amplitudes significantly different from 0. (B)Minumum Audible Angle. MAA plotted for both stimulation conditions 65° (left) and 95° (right). Mean values—solid line, median—dashed line. Whiskers extent to the most extreme data point which is within the range of 1.5 times of the interquartile distance (1st–3rd quartile). Outliers are shown by open dots. Interquartile distance of MAA thresholds (1st–3rd quartile): 3.5° for reference at 65°, and 7.8° for reference at 95°; n = 17.

References

    1. Ahveninen J., Jääskeläinen I. P., Raij T., Bonmasser G., Devore S., Hämäläinen M., et al. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proc. Natl. Acad. Sci. U.S.A. 103, 14608–14613 10.1073/pnas.0510480103
    1. Alain C., Arnott S. R. (2000). Selectively attenting to auditory objects. Front. Biosci. 5, D202–D212
    1. Alho K., Sinervo N. (1997). Preattentive processing of complex sounds in the human brain. Neurosci. Lett. 233, 33–36
    1. Allen J., Kraus N., Bradlow A. (2000). Neural representation of consciously imperceptible speech sound differences. Percept. Psychophys. 62, 1383–1393
    1. Altman J. A., Vaitulevich S. P., Shestopalova L. B., Varfolomeev A. L. (2005). Mismatch negativity evoked by stationary and moving auditory images of different azimuthal positions. Neurosci. Lett. 384, 330–335 10.1016/j.neulet.2005.05.002
    1. Altmann C. F., Bledowski C., Wibral M., Kaiser J. (2007). Processing of location and pattern changes of natural sounds in the human auditory cortex. Neuroimage 35, 1192–1200 10.1016/j.neuroimage.2007.01.007
    1. Amenedo E., Escera C. (2000). The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception. Eur. J. Neurosci. 12, 2570–2574
    1. American Electroencephalographic Society. (1994). Guideline thirteen: guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 11, 143–147
    1. Arnott S. R., Alain C. (2002). Stepping out of the spotlight: MMN attenuation as a function of distance from the attended location. Neuroreport 13, 2209–2212 10.1097/
    1. Blauert J. (1996). Spatial Hearing. The Psychophysics of Human Sound Localization. Massachusetts, MA: MIT Press
    1. Briley P. M., Kitterick P. T., Summerfield A. Q. (2012). Evidence for opponent process analysis of sound source location in humans. J. Assoc. Res. Otolaryngol. 14, 83–101 10.1007/s10162-012-0356-x
    1. Colin C., Radeau M., Soquet A., Dachy B., Deltenre P. (2002). Electrophysiology of spatial scene analysis: the mismatch negativity (MMN) is sensitive to the ventriloquism illusion. Clin. Neurophysiol. 113, 507–518
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for a analysis of signle-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 10.1016/j.jneumeth.2003.10.009
    1. Deouell L. Y., Bentin S., Soroker N. (2000). Electrophysiological evidence for an early (pre-attentive) information processing deficit in patients with right hemispheric damage and unilateral neglect. Brain 123, 353–365
    1. Deouell L. Y., Heller A. S., Malach R., D'Esposito M., Knight R. T. (2007). Cerebral responses to change in spatial location of unattend sounds. Neuron 55, 985–996 10.1016/j.neuron.2007.08.019
    1. Deouell L. Y., Parnes A., Pickard N., Knight R. T. (2006). Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity. Eur. J. Neurosci. 24, 1488–1494 10.1111/j.1460-9568.2006.05025.x
    1. Fritz J. B., Elhilali M., David S. V., Shamma S. A. (2007). Auditory attention—focusing the searchlight on sound. Curr. Opin. Neurobiol. 17, 437–455 10.1016/j.conb.2007.07.011
    1. Giard M. H., Lavikainen J., Reinikainen K., Bertrand O., Perrin J., Pernier J., et al. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis. J. Cogn. Neurosci 7, 133–143
    1. Green D. M., Swets J. A. (1988). Signal Detection Theory and Psychophysics. Reprint edition Los Altos, CA: Peninsula Publishing
    1. Grothe B., Pecka M., McAlpine D. (2010). Mechanisms of sound localization in mammals. Physiol. Rev. 90, 983–1012 10.1152/physrev.00026.2009
    1. Hartmann W. M., Rakerd B. (1989). On the minumum audible angle—a descision theory approach. J. Acoust. Soc. Am. 85, 2031–2041
    1. Heffner H. E. (1997). The role of macaque auditory cortex in sound localization. Acta Otolaryngol. Suppl. 532, 22–27
    1. Horváth J., Czigler I., Jacobsen T., Maess B., Schröger E., Winkler I. (2008). MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology 45, 60–69 10.1111/j.1469-8986.2007.00599.x
    1. Jäkel F., Wichmann F. A. (2006). Spatial four-alternative forced-choice method is the preferred psychophysiological method for naïve observers. J. Vis. 6, 1307–1322 10.1167/6.11.13
    1. Jenkins W. M., Merzenich M. M. (1984). Role of cat primary auditory cortex for sound-localization behavior. J. Neurophysiol. 52, 819–847
    1. Jones S. L., Vaz Pato M., Sprague L. (2000). Spectro-temporal analysis of complex tones: two cortical processes dependent on retention of sounds in the long auditory store. Clin. Neurophysiol. 111, 1596–1576
    1. Koistinen S., Rinne T., Cederström S., Alho K. (2012). Effects of significance of auditory location changes on event related brain potentials and pitch discrimination performance. Brain Res. 1427, 44–53 10.1016/j.brainres.2011.09.034
    1. Krumbholz K., Schonwiesner M., Rubsamen R., Zilles K., Fink G. R., von Cramon D. Y. (2005). Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur. J. Neurosci. 21, 230–238 10.1111/j.1460-9568.2004.03836.x
    1. Kujala T., Tervaniemi M., Schröger E. (2007). The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol. Psychol. 74, 1–19 10.1016/j.biopsycho.2006.06.001
    1. Lang H., Nyrke T., Ek M., Aaltonen O., Raimo I., Näätänen R. (1990). Pitch discrimination performance and auditory event-related potentials, in Psychophysiological Brain Research, eds Brunia C. H. M., Gaillard A. W. K., Kok A., Mulder G., Verbaten M. N. (Tilburg: Tilburg University Press; ), 294–298
    1. Lee C. C., Middlebrooks J. C. (2011). Auditory cortex spatial sensitivity sharpens during task performance. Nat. Neurosci. 14, 108–114 10.1038/nn.2713
    1. Magezi D. A., Krumbholz K. (2010). Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J. Neurophysiol. 104, 1997–2007 10.1152/jn.00424.2009
    1. May P. J., Tiitinen H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47, 66–122 10.1111/j.1469-8986.2009.00856.x
    1. McAlpine D., Jiang D., Palmer A. R. (2001). A neural code for low-frequency sound localization in mammals. Nat. Neurosci. 4, 369–401 10.1038/86049
    1. Menning H., Roberts L. E., Pantev C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 11, 817–822
    1. Middlebrooks J. C., Xu L., Eddins A. C., Green D. M. (1998). Codes for sound-source location in nontonotopic auditory cortex. J. Neurophysiol. 80, 863–881
    1. Middlebrooks J. C., Green D. M. (1991). Sound localization by human listeners. Annu. Rev. Psychol. 42, 135–159 10.1146/annurev.ps.42.020191.001031
    1. Mills A. W. (1958). On the minimum audible angle. J. Acoust. Soc. Am. 30, 237–246
    1. Mondor T. A., Zatorre R. J. (1995). Shifting and focusing auditory spatial attention. J. Exp. Psychol. Hum. Percept. Perform. 21, 387–409
    1. Näätänen R., Alho K. (1997). Mismatch negativity—the measure for central sound representation accuracy. Audiol. Neurootol. 2, 341–353
    1. Näätänen R., Jacobsen T., Winkler I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42, 25–32 10.1111/j.1469-8986.2005.00256.x
    1. Näätänen R., Paavilainen P., Rinne T., Alho K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118, 2544–2590 10.1016/j.clinph.2007.04.026
    1. Näätänen R., Picton T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and analysis of the component structure. Psychophysiology 24, 375–425
    1. Näätänen R., Schröger E., Karakas S., Tervaniemi M., Paavilainen P. (1993). Development of a memory trace for a complex sound in the human brain. Neuroreport 4, 503–506
    1. Näätänen R., Winkler I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychol. Bull. 125, 826–859
    1. Nager W., Kohlmetz C., Joppich G., Möbes J., Münte T. F. (2003). Tracking of multiple sound sources defined by interaural time differences: brain potential evidence in humans. Neurosci. Lett. 344, 181–184
    1. Okamoto H., Stracke H., Wolters C. H., Schmael F., Pantev C. (2007). Attention improves population-level frequency tuning in human auditory cortex. J Neurosci 27, 10383–10390 10.1523/JNEUROSCI.2963-07.2007
    1. Oldfield S. R., Parker S. P. (1984). Acuity of sound localisation: a topography of auditory space. 1. Normal hearing conditions. Perception 13, 581–600
    1. Paavilainen P., Arajarvi P., Takegata R. (2007). Preattentive detection of nonsalient contingencies between auditory features. Neuroreport 18, 159–163 10.1097/WNR.0b013e328010e2ac
    1. Paavilainen P., Karlsson M. L., Reinikainen K., Näätänen R. (1989). Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalogr. Clin. Neurophysiol. 73, 129–141
    1. Pakarinen S., Takegata R., Rinne T., Huotilainen M., Näätänen R. (2007). Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clin. Neurophysiol. 118, 177–185 10.1016/j.clinph.2006.09.001
    1. Perrott D. R. (1984). Concurrent minimum audible angle: a re-examination of the concept of auditory spatial acuity. J. Acoust. Soc. Am. 75, 1201–1206
    1. Perrott D. R., Saberi K. (1990). Minimum audible angle thresholds for sources varying in both elevation and azimuth. J. Acoust. Soc. Am. 87, 1728–1731
    1. Pettigrew C. M., Murdoch B. E., Ponton C. W., Finnigan S., Alku P., Kei J., et al. (2004). Automatic auditory processing of english words as indexed by the mismatch negativity, using a multiple deviant paradigm. Ear Hear. 25, 284–301
    1. Phillips D. P. (2008). A perceptual architecture for sound lateralization in man. Hear. Res. 238, 124–132 10.1016/j.heares.2007.09.007
    1. Picton T. W., Alain C., Otten L., Ritter W., Achim A. (2000). Mismatch negativity: different water in the same river. Audiol. Neurootol. 5, 111–139
    1. Recanzone G. H., Makhamra S. D., Guard D. C. (1998). Comparison of relative and absolute sound localization ability in humans. J. Acoust. Soc. Am. 103, 1085–1097
    1. Richter N., Schröger E., Rübsamen R. (2009). Hemispheric specialization during discrimination of sound sources reflected by MMN. Neuropsychologia 47, 2652–2659 10.1016/j.neuropsychologia.2009.05.017
    1. Röttger S., Schröger E., Grube M., Grimm S., Rübsamen R. (2007). Mismatch negativity on the cone of confusion. Neurosci. Lett. 414, 178–182 10.1016/j.neulet.2006.12.023
    1. Salminen N. H., May P. J., Alku P., Tiitinen H. (2009). A population rate code of auditory space in the human cortex. PloS ONE 4:e7600 10.1371/journal.pone.0007600
    1. Salminen N. H., Tiitinen H., May P. J. (2012). Auditory spatial processing in human cortex. Neuroscientist 18, 602–612 10.1177/1073858411434209
    1. Salminen N. H., Tiitinen H., Yrttiaho S., May P. J. (2010). The neural code for interaural time difference in human auditory cortex. J. Acoust. Soc. Am. 127, EL60–EL65 10.1121/1.3290744
    1. Savel S. (2009). Individual differences and left/right asymmetries in auditory space perception. 1. Localization of low-frequency sounds in free field. Hear. Res. 255, 142–154 10.1016/j.heares.2009.06.013
    1. Schröger E. (1996). Interaural time and level differences: integrated or separated processing? Hear. Res. 96, 191–198
    1. Schröger E. (1997). On the detection of auditory deviations: a pre-attentive activation model. Psychophysiology 34, 245–257
    1. Schröger E., Bendixen A., Trujillo-Barreto N. J., Roeber U. (2007). Processing of abstract rule violations in audition. PLoS ONE 2:e1131 10.1371/journal.pone.0001131
    1. Schröger E., Wolff C. (1996). Mismatch response of the human brain to changes in sound location. Neuroreport 7, 3005–3008
    1. Shinn-Cunningham B. G., Santarelli S., Kopco N. (2000). Tori of confusion: binaural localization cues for sources within reach of a listener. J. Acoust. Soc. Am. 107, 1627–1636
    1. Spierer L., Bellmann-Thiran A., Maeder P., Murray M. M., Clarke S. (2009). Hemispheric competence for auditory spatial representation. Brain 132, 1953–1966 10.1093/brain/awp127
    1. Spierer L., Tardif E., Sperdin H., Murray M. M., Clarke S. (2007). Learning-induced plasticity in auditory spatial representations reveald by electrical neuroimaging. J. Neurosci. 27, 5474–5483 10.1523/JNEUROSCI.0764-07.2007
    1. Stecker G. C., Harrington I. A., Middlebrooks J. C. (2005). Location coding by opponent neural populations in the auditory cortex. PLoS Biol. 3:e78 10.1371/journal.pbio.0030078
    1. Stevens S. S., Newman E. B. (1936). The localizaion of actual sources of sound. Am. J. Psychol. 48, 297–306
    1. Teder-Sälejärvi W. A., Hillyard S. A. (1998). The gradient of spatial auditory attention in free field: an event-related potential study. Percept. Psychophys. 60, 1228–1242
    1. Teder-Sälejärvi W. A., Hillyard S. A., Röder B., Neville H. J. (1999). Spatial attention to central and peripheral auditory stimuli as indexed by event-related potentials. Brain Res. Cogn. Brain Res. 8, 213–227
    1. Thurlow W. R., Mergener J. R. (1970). Effects of stimulus duration on localization of direction noise stimuli. J. Speech Hear. Res. 13, 826–838
    1. Tiitinen H., May P., Reinikainen K., Näätänen R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372, 90–92 10.1038/372090a0
    1. Tremblay K., Kraus N., McGee T. (1998). The time course of auditory perceptual learning: neurophysiological changes during speech-sound training. Neuroreport 9, 3557–3560
    1. Vaitulevich S. F., Shestopalova L. B. (2010). Interhemisphere asymmetry of auditory evoked potentials in humans and mismatch negativity during sound source localization. Neurosci. Behav. Physiol. 40, 629–638 10.1007/s11055-010-9305-5
    1. van Bergeijk W. A. (1962). Variation on a theme of von Békésy: a model of binaural interaction. J. Acoust. Soc. Am. 34, 1431–1437
    1. von Békésy G. (1930). Zur Theorie des Hörens. Über das Richtungshören bei einer Zeitdifferenz oder Lautstärkenungleichheit der beiderseitigen Schalleinwirkungen. Physik. Z. 31, 824–835
    1. Winkler I., Schröger E., Cowan N. (2001). The role of large-scale memory organization in the mismatch negativity event-related brain potential. J. Cogn. Neurosci. 13, 59–71
    1. Zatorre R. J., Penhune V. B. (2001). Spatial localization after excision of human auditory cortex. J. Neurosci. 21, 6321–6328

Source: PubMed

3
Se inscrever