Feasibility and effect of interactive telerehabilitation on balance in individuals with chronic stroke: a pilot study

Shih-Ching Chen, Chueh-Ho Lin, Sheng-Wen Su, Yu-Tai Chang, Chien-Hung Lai, Shih-Ching Chen, Chueh-Ho Lin, Sheng-Wen Su, Yu-Tai Chang, Chien-Hung Lai

Abstract

Background: Stroke survivors need continuing exercise intervention to maintain functional status. This study assessed the feasibility and efficacy of an interactive telerehabilitation exergaming system to improve balance in individuals with chronic stroke, compared to conventional one-on-one rehabilitation.

Methods: In this prospective case-control pilot study, 30 Taiwanese individuals with chronic stroke were enrolled and randomly allocated to an experimental group and a control group. All participants received intervention 3 times per week for 4 weeks in the study hospital. The experiment group underwent telerehabilitation using a Kinect camera-based interactive telerehabilitation system in an independent room to simulate home environment. In contrast, the control group received conventional one-on-one physiotherapy in a dedicated rehabilitation area. The effectiveness of interactive telerehabilitation in improving balance in stroke survivors was evaluated by comparing outcomes between the two groups. The primary outcome was Berg Balance Scale (BBS) scores. Secondary outcomes were performance of the Timed Up and Go (TUG) test, Modified Falls Efficacy Scale, Motricity Index, and Functional Ambulation Category.

Results: Comparison of outcomes between experimental and control groups revealed no significant differences between groups at baseline and post-intervention for all outcome measures. However, BBS scores improved significantly in both groups (control group: p = 0.01, effect size = 0.49; experimental group: p = 0.01, effect size = 0.70). Completion times of TUG tests also improved significantly in the experimental group (p = 0.005, effect size = 0.70).

Conclusion: The Kinect camera-based interactive telerehabilitation system demonstrates superior or equal efficacy compared to conventional one-on-one physiotherapy for improving balance in individuals with chronic stroke. Trial registration ClinicalTrials.gov. NCT03698357. Registered October 4, 2018, retrospectively registered.

Keywords: Balance; Berg Balance Scale; Randomized controlled trial; Stroke; Telerehabilitation.

Conflict of interest statement

All authors have no conflicts of interest to declare.

Figures

Fig. 1
Fig. 1
Architecture of the bidirectional telerehabilitation system. This system links a main controller side for therapists and an end-user side for stroke survivors with chronic stroke by wireless sensor network technologies. Both sides have a peripheral component interconnect (PCI) network card. A cloud database center allows therapist to monitor the gaming exercises by stroke survivors instantly or review performance data later
Fig. 2
Fig. 2
Design of the target-oriented stepping task. Participants underwent the interactive target-oriented stepping task according to the falling objects on the television screen (a). Participants raised their legs according to the falling objects on the monitor (b)
Fig. 3
Fig. 3
Diagram of the multidirectional reaching task. Participants performed the multidirectional reaching task in front of the monitor (a). They were instructed to reach toward a given target in eight directions according to a random cue (b)
Fig. 4
Fig. 4
Design of the Tai Chi exercises. Participants underwent the interactive Tai Chi exercises by imitating motions of avatar on the screen (a). Avatar representations of participants’ movements were displayed on the monitor (b)
Fig. 5
Fig. 5
Experimental flow diagram. Thirty participants with chronic stroke were randomly assigned to experimental and control groups. Participant performance was assessed before and after the 4-week intervention

References

    1. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–1259.
    1. Feigin, VL, MH Forouzanfar, R Krishnamurthi, GA Mensah, M Connor, DA Bennett, et al., Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–54.
    1. Saunders DH. CA Greig, and GE Mead, Physical activity and exercise after stroke: review of multiple meaningful benefits. Stroke. 2014;45(12):3742–3747. doi: 10.1161/STROKEAHA.114.004311.
    1. Vahlberg B. T Cederholm, B Lindmark, L Zetterberg, and K Hellström, Factors related to performance-based mobility and self-reported physical activity in individuals 1–3 years after stroke: a cross-sectional cohort study. J Stroke Cerebrovasc Dis. 2013;22(8):e426–e434. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.028.
    1. Fini NA, Holland AE, Keating J, Simek J, Bernhardt J. How physically active are people following stroke? Systematic review and quantitative synthesis. Phys Ther. 2017;97(7):707–717. doi: 10.1093/ptj/pzx038.
    1. Lai CH, Chen HC, Liou TH, Li W, Chen SC. Exercise Interventions for Individuals With Neurological Disorders: A Systematic Review of Systematic Reviews. Am J Phys Med Rehabil. 2019;98(10):921–930. doi: 10.1097/PHM.0000000000001247.
    1. Verheyden GS, Weerdesteyn V, Pickering RM, Kunkel D, Lennon S, Geurts AC, et al. Interventions for preventing falls in people after stroke. Cochrane Database Syst Rev. 2013;5:CD008728.
    1. Andersson AG. A Seiger, and P Appelros, Hip fractures in persons with stroke. Stroke Res Treat. 2013;2013:954279.
    1. Winstein CJ, et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98–e169. doi: 10.1161/STR.0000000000000098.
    1. Mehndiratta MM, Singhal AB, Chaturvedi S, Sivakumar MR, Moonis M. Meeting the challenges of stroke in India. Neurology. 2013;80(24):2246–7. doi: 10.1212/WNL.0b013e318296e7c3.
    1. Sarfo FS, Ulasavets U, Opare-Sem OK, Ovbiagele B. Tele-rehabilitation after stroke: an updated systematic review of the literature. J Stroke Cerebrovasc Dis. 2018;27(9):2306–2318. doi: 10.1016/j.jstrokecerebrovasdis.2018.05.013.
    1. Sheehy L, Taillon-Hobson A, Sveistrup H, Bilodeau M, Yang C, Welch V, et al. Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial. Trials. 2019;20(1):333. doi: 10.1186/s13063-019-3438-9.
    1. Hesse S. Treadmill training with partial body weight support after stroke: a review. NeuroRehabilitation. 2008;23(1):55–65. doi: 10.3233/NRE-2008-23106.
    1. Jutai JW, Teasell RW. The necessity and limitations of evidence-based practice in stroke rehabilitation. Top Stroke Rehabil. 2003;10(1):71–8. doi: 10.1310/CRDA-PGFW-KHEL-20E1.
    1. Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–27. doi: 10.1016/S1474-4422(16)30121-1.
    1. Hesse SA, Jahnke MT, Schreiner C, Mauritz KH. Gait symmetry and functional walking performance in hemiparetic patients prior to and after a 4-week rehabilitation programme. Gait Posture. 1993;1(3):166–171. doi: 10.1016/0966-6362(93)90059-A.
    1. Pollock A, Baer G, Campbell P, Choo PL, Forster A, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev. 2014;2014(4):CD001920.
    1. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what's the evidence? Clin Rehabil. 2004;18(8):833–62. doi: 10.1191/0269215504cr843oa.
    1. Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol. 2011;7(2):76–85. doi: 10.1038/nrneurol.2010.200.
    1. Valenzuela T, Okubo Y, Woodbury A, Lord SR, Delbaere K. Adherence to technology-based exercise programs in older adults: a systematic review. J Geriatr Phys Ther. 2018;41(1):49–61. doi: 10.1519/JPT.0000000000000095.
    1. Lloréns R, Noé E, Colomer C, Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–425.e2. doi: 10.1016/j.apmr.2014.10.019.
    1. Adamovich SV, Fluet GG, Tunik E, Merians AS. Sensorimotor training in virtual reality: a review. NeuroRehabilitation. 2009;25(1):29–44. doi: 10.3233/NRE-2009-0497.
    1. Rogers JM, Duckworth J, Middleton S, Steenbergen B, Wilson PH. Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study. J Neuroeng Rehabil. 2019;16(1):56. doi: 10.1186/s12984-019-0531-y.
    1. Dozza M, Chiari L, Peterka RJ, Wall C, Horak FB. What is the most effective type of audio-biofeedback for postural motor learning? Gait Posture. 2011;34(3):313–9. doi: 10.1016/j.gaitpost.2011.05.016.
    1. Morone G, Tramontano M, Iosa M, Shofany J, Iemma A, Musicco M, et al. The efficacy of balance training with video game-based therapy in subacute stroke patients: a randomized controlled trial. Biomed Res Int. 2014;2014:580861.
    1. Nieuwboer A, Rochester L, Müncks L, Swinnen SP. Motor learning in Parkinson's disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15(Suppl 3):S53–8. doi: 10.1016/S1353-8020(09)70781-3.
    1. Dodakian L, McKenzie AL, Le V, See J, Pearson-Fuhrhop K, Burke Quinlan E, et al. A home-based telerehabilitation program for patients with stroke. Neurorehabil Neural Repair. 2017;31(10–11):923–933. doi: 10.1177/1545968317733818.
    1. Held JP, Ferrer B, Mainetti R, Steblin A, Hertler B, Moreno-Conde A, et al. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system. Eur J Phys Rehabil Med. 2018;54(4):545–553.
    1. Niama Natta DD, Alagnide E, Kpadonou GT, Stoquart GG, Detrembleur C, Lejeune TM. Feasibility of a self-rehabilitation program for the upper limb for stroke patients in Benin. Ann Phys Rehabil Med. 2015;58(6):322–5. doi: 10.1016/j.rehab.2015.08.003.
    1. Triandafilou KM, Tsoupikova D, Barry AJ, Thielbar KN, Stoykov N, Kamper DG. Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke. J Neuroeng Rehabil. 2018;15(1):88. doi: 10.1186/s12984-018-0429-0.
    1. Shah SK, Harasymiw SJ, Stahl PL. Stroke rehabilitation: outcome based on brunnstrom recovery stages. The Occupational Therapy. J Res. 1986;6(6):365–376.
    1. Li GY, Wang W, Liu GL, Zhang Y. Effects of Tai Chi on balance and gait in stroke survivors: a systematic meta-analysis of randomized controlled trials. J Rehabil Med. 2018;50(7):582–588. doi: 10.2340/16501977-2346.
    1. Lai CH, Peng CW, Chen YL, Huang CP, Hsiao YL, Chen SC. Effects of interactive video-game based system exercise on the balance of the elderly. Gait Posture. 2013;37(4):511–5. doi: 10.1016/j.gaitpost.2012.09.003.
    1. Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27(1):27–36.
    1. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Chan PP, Si Tou JI, Tse MM, Ng SS. Reliability and validity of the timed up and go test with a motor task in people with chronic stroke. Arch Phys Med Rehabil. 2017;98(11):2213–2220. doi: 10.1016/j.apmr.2017.03.008.
    1. Tinetti ME, Richman D, Powell L. Falls efficacy as a measure of fear of falling. J Gerontol. 1990;45(6):P239–43. doi: 10.1093/geronj/45.6.P239.
    1. Hill KD, Schwarz JA, Kalogeropoulos AJ, Gibson SJ. Fear of falling revisited. Arch Phys Med Rehabil. 1996;77(10):1025. doi: 10.1016/S0003-9993(96)90063-5.
    1. Schmid AA, Van Puymbroeck M, Altenburger PA, Dierks TA, Miller KK, Damush TM, et al. Balance and balance self-efficacy are associated with activity and participation after stroke: a cross-sectional study in people with chronic stroke. Arch Phys Med Rehabil. 2012;93(6):1101–7. doi: 10.1016/j.apmr.2012.01.020.
    1. Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol. 1980;19(6):382. doi: 10.1159/000115178.
    1. Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64(1):35–40. doi: 10.1093/ptj/64.1.35.
    1. Mehrholz J, Wagner K, Rutte K, Meiβner D. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil. 2007;88(10):1314–9. doi: 10.1016/j.apmr.2007.06.764.
    1. Ottenbacher KJ, Maas F. How to detect effects: statistical power and evidence-based practice in occupational therapy research. Am J Occup Ther. 1999;53(2):181–8. doi: 10.5014/ajot.53.2.181.
    1. Hughes AM, Burridge JH, Demain SH, Ellis-Hill C, Meagher C, Tedesco-Triccas L, et al. Translation of evidence-based Assistive Technologies into stroke rehabilitation: users' perceptions of the barriers and opportunities. BMC Health Serv Res. 2014;14:124. doi: 10.1186/1472-6963-14-124.
    1. Levac DE, Huber ME, Sternad D. Learning and transfer of complex motor skills in virtual reality: a perspective review. J Neuroeng Rehabil. 2019;16(1):121. doi: 10.1186/s12984-019-0587-8.
    1. Thielbar KO, Triandafilou KM, Barry AJ, Yuan N, Nishimoto A, Johnson J, et al. Home-based upper extremity stroke therapy using a multiuser virtual reality environment: a randomized trial. Arch Phys Med Rehabil. 2020;101(2):196–203. doi: 10.1016/j.apmr.2019.10.182.
    1. Hiengkaew VK, Jitaree A, Chaiyawat P. Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed "Up & Go" Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch Phys Med Rehabil. 2012;93(7):1201–8. doi: 10.1016/j.apmr.2012.01.014.
    1. Alghadir AH, Al-Eisa ES, Anwer S, Sarkar B. Reliability, validity, and responsiveness of three scales for measuring balance in patients with chronic stroke. BMC Neurol. 2018;18(1):141. doi: 10.1186/s12883-018-1146-9.
    1. Sullivan GM, Feinn R. Using effect size-or why the p value is not enough. J Grad Med Educ. 2012;4(3):279–282. doi: 10.4300/JGME-D-12-00156.1.
    1. Bower K, Thilarajah S, Pua YH, Williams G, Tan D, Mentiplay B, et al. Dynamic balance and instrumented gait variables are independent predictors of falls following stroke. J Neuroeng Rehabil. 2019;16(1):3. doi: 10.1186/s12984-018-0478-4.
    1. Mercer VS, Freburger JK, Chang SH, Purser JL. Measurement of paretic-lower-extremity loading and weight transfer after stroke. Phys Ther. 2009;89(7):653–64. doi: 10.2522/ptj.20080230.
    1. Lloréns R, Gil-Gómez JA, Alcañiz M, Colomer C, Noé E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):261–8. doi: 10.1177/0269215514543333.
    1. Cho KH, Lee WH. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil. 2013;92(5):371–80. (quiz 380–2, 458).
    1. Deliagina TG, Musienko PE, Zelenin PV. Nervous mechanisms of locomotion in different directions. Curr Opin Physiol. 2019;8:7–13. doi: 10.1016/j.cophys.2018.11.010.
    1. Taylor-Piliae RE, Haskell WL. Tai Chi exercise and stroke rehabilitation. Top Stroke Rehabil. 2007;14(4):9–22. doi: 10.1310/tsr1404-9.
    1. Gatts S. Neural mechanisms underlying balance control in Tai Chi. Med Sport Sci. 2008;52:87–103. doi: 10.1159/000134289.
    1. Xie G, Rao T, Lin L, Lin Z, Xiao T, et al. Effects of Tai Chi Yunshou exercise on community-based stroke patients: a cluster randomized controlled trial. Eur Rev Aging Phys Act. 2018;15:17. doi: 10.1186/s11556-018-0206-x.
    1. Song GB, Park EC. Effect of virtual reality games on stroke patients' balance, gait, depression, and interpersonal relationships. J Phys Ther Sci. 2015;27(7):2057–60. doi: 10.1589/jpts.27.2057.
    1. Rajaratnam BS, Gui Kaien J, Lee Jialin K, SweeSin K, et al. Does the inclusion of virtual reality games within conventional rehabilitation enhance balance retraining after a recent episode of stroke? Rehabil Res Pract. 2013;2013:649561.
    1. Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online. 2018;17(1):124. doi: 10.1186/s12938-018-0550-0.
    1. Kühn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol Psychiatry. 2014;19(2):265–71. doi: 10.1038/mp.2013.120.
    1. Perez-Marcos D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. J Neuroeng Rehabil. 2018;15(1):113. doi: 10.1186/s12984-018-0461-0.
    1. Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil. 2017;14(1):53. doi: 10.1186/s12984-017-0268-4.
    1. Yang YR. MP Tsai, TY Chuang, WH Sung, and RY Wang, Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28(2):201–206. doi: 10.1016/j.gaitpost.2007.11.007.
    1. Walker ML, Ringleb SI, Maihafer GC, Walker R, Crouch JR, Van Lunen B, et al. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Arch Phys Med Rehabil. 2010;91(1):115–22. doi: 10.1016/j.apmr.2009.09.009.
    1. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349.
    1. Dockx K, Bekkers EM, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, et al. Virtual reality for rehabilitation in Parkinson's disease. Cochrane Database Syst Rev. 2016;12(12):CD010760.

Source: PubMed

3
Se inscrever