Soluble CD14 subtype (sCD14-ST) as biomarker in neonatal early-onset sepsis and late-onset sepsis: a systematic review and meta-analysis

Iris van Maldeghem, Charlotte M Nusman, Douwe H Visser, Iris van Maldeghem, Charlotte M Nusman, Douwe H Visser

Abstract

Background: Early diagnosis of bacterial sepsis in neonates is hampered by non-specific symptoms and the lack of rapid responding laboratory measures. The biomarker soluble CD14 subtype (sCD14-ST) seems promising in the diagnostic process of neonatal sepsis. In order to evaluate the differences in diagnostic accuracy of sCD14-ST between early onset sepsis (EOS) and late onset sepsis (LOS) we assessed this systematic review and meta-analysis.

Results: Twelve articles were included in the systematic review and 10 in the meta-analysis. There was a high risk of bias on patient selection, index test and/or flow and timing. The overall quality of the included studies was moderate. At sepsis onset a consequently higher level of sCD14-ST was found in septic neonates compared to healthy controls with significant higher levels in LOS compared to EOS. In the first 24 h after sepsis onset a significant increase in pooled means of plasma sCD14-ST levels was seen in EOS (t(71.6) = 7.3, p < .0001) while this was not seen in LOS or healthy controls. Optimal cut-off values ranged from 305 to 672 ng/l for EOS cases versus healthy controls. The pooled sensitivity was 81% (95%CI: 0.76-0.85), the pooled specificity was 86% (0.81-0.89) with an AUC of 0.9412 (SE 0.1178). In LOS optimal cut-off values ranged from 801 to 885 ng/l with a pooled sensitivity of 81% (0.74-0.86) and a pooled specificity of 100% (0.98-1.00). An AUC and SROC was not estimable in LOS because of the low number of studies.

Conclusions: sCD14-ST is a promising and rapid-responding diagnostic biomarker for EOS and LOS. The difference in pooled means between EOS and LOS underlines the importance to consider EOS and LOS as two different disease entities, requiring separate analysis in original articles and systematic reviews.

Keywords: Early onset sepsis; Late onset sepsis; Neonatal sepsis; Presepsin; Soluble CD14 subtype.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram literature search. * Two studies were excluded during full text reading based on language (Polish and Turkish) because none of the reviewers were competent in this languages
Fig. 2
Fig. 2
QUADAS-2 quality assessment of selected studies summary and graphical display
Fig. 3
Fig. 3
Pooled mean and SD of sCD14-ST levels for EOS, LOS and healthy controls at t = 0. EOS = early-onset sepsis (n = 106), LOS = late-onset sepsis (n = 65), healthy controls (n = 285)
Fig. 4
Fig. 4
Pooled mean and SD of sCD14-ST levels of each subgroup at different timepoints. EOS = early onset sepsis, LOS = late onset sepsis, Neonatal = neonatal sepsis. * Time intervals 2–3 and 5–7 were taken together
Fig. 5
Fig. 5
a Forest plot of sensitivity and specificity of sCD14-ST levels in EOS at t = 0. b Summary ROC plot of sensitivity and specificity of sCD14-ST for EOS at t = 0. EOS = early onset sepsis
Fig. 6
Fig. 6
Forest plot of sensitivity and specificity of sCD14-ST levels in LOS at t = 0. LOS = late onset sepsis
Fig. 7
Fig. 7
a Forest plot of sensitivity and specificity of sCD14-ST levels in neonatal sepsis at t = 0. b Summary ROC plot of sensitivity and specificity of sCD14-ST for neonatal sepsis at t = 0

References

    1. Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin N Am. 2013;60(2):367–389. doi: 10.1016/j.pcl.2012.12.003.
    1. Heron M. Deaths: leading causes for 2013. Natl Vital Stat Rep. 2016;65(2):1–95.
    1. Boghossian NS, Page GP, Bell EF, et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatr. 2013;162(6):1120–1124. doi: 10.1016/j.jpeds.2012.11.089.
    1. Ballot DE, Chirwa T, Ramdin T, et al. Comparison of morbidity and mortality of very low birth weight infants in a central Hospital in Johannesburg between 2006/2007 and 2013. BMC Pediatr. 2015;15(1):20.
    1. Mussap M, Noto A, Fravega M, Fanos V. Soluble CD14 subtype presepsin (sCD14-ST) and lipopolysaccharide binding protein (LBP) in neonatal sepsis: new clinical and analytical perspectives for two old biomarkers. J Matern Fetal Neonatal Med. 2011;24(2):12–14. doi: 10.3109/14767058.2011.601923.
    1. Delanghe JR, Speeckaert MM. Translational research and biomarkers in neonatal sepsis. Clin Chim Acta. 2015;451:46–64. doi: 10.1016/j.cca.2015.01.031.
    1. Chenevier-Gobeaux C, Bardet V, Poupet H, Poyart H, Borderie D, Claessens YE, et al. Presepsin (sCD14-ST) secretion and kinetics by peripheral blood mononuclear cells and monocytic THP-1 cell line. Ann Biol Clin (Paris). 2016;74(1):93–7.
    1. Bellos I, Fitrou G, Pergialiotis V, Thomakos N, Perrea DN, Daskalakis G. The diagnostic accuracy of presepsin in neonatal sepsis: a meta-analysis. Eur J Pediatr. 2018;177(5):625–632. doi: 10.1007/s00431-018-3114-1.
    1. Montaldo P, Rosso R, Santantonio A, Chello G, Giliberti P. Presepsin for the detection of early-onset sepsis in preterm newborns. Pediatr Res. 2016;81(2):329–334. doi: 10.1038/pr.2016.217.
    1. Poggi C, Bianconi T, Gozzini E, Generoso M, Dani C. Presepsin for the detection of late-onset sepsis in preterm newborns. Pediatrics. 2015;135(1):68–75. doi: 10.1542/peds.2014-1755.
    1. Ozdemir AA, Elgormus Y. Diagnostic value of Presepsin in detection of early-onset neonatal Sepsis. Am J Perinatol. 2017;34(06):550–556. doi: 10.1055/s-0036-1593851.
    1. Topcuoglu S, Arslanbuga C, Gursoy T, et al. Role of presepsin in the diagnosis of late-onset neonatal sepsis in preterm infants. J Matern Fetal Neonatal Med. 2016;29(11):1834–1839.
    1. Xiao Ting, Chen Li-Ping, Zhang Li-hua, Lai Fu-Huang, Zhang Li, Qiu Qun-feng, Que Rong-Liang, Xie SiSi, Wu Ding-Chang. The clinical significance of sCD14-ST for blood biomarker in neonatal hematosepsis. Medicine. 2017;96(18):e6823. doi: 10.1097/MD.0000000000006823.
    1. Liberati Alessandro, Altman Douglas G., Tetzlaff Jennifer, Mulrow Cynthia, Gøtzsche Peter C., Ioannidis John P. A., Clarke Mike, Devereaux P. J., Kleijnen Jos, Moher David. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Medicine. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100.
    1. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.
    1. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6(31):31.
    1. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.
    1. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.
    1. GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla California USA, . Accessed 27 May 2019.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557.
    1. Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y. Chapter 10: Analysing and Presenting Results. In: Deeks JJ, Bossuyt PM, Gatsonis C, The Cochrane Collaboration, editors. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0. 2010.
    1. Van Enst WA, Ochodo E, Scholten RJPM, Hooft L, Leeflang MM. Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study. BMC Med Res Methodol. 2014;14(1):70.
    1. Tabl HA, Abed NT. Diagnostic value of presepsin in neonatal sepsis. Egypt J Immunol. 2016;23(2):29–37.
    1. Sabry JH, Elfeky OA, Elsadek AE, Eldaly AA. Presepsin as an early reliable diagnostic and prognostic marker of neonatal sepsis. Int J Adv Res. 2016;4(6):1538–1549. doi: 10.21474/IJAR01/716.
    1. Mostafa RM, Kholouss SM, MZakaria N, Hafiz TR, Abdelaziz DM. Detection of presepsin and surface CD14 as a biomarker for early diagnosis of neonatal sepsis. J Am Sci. 2015;11(10):104–116.
    1. Osman AS, Awadallah MG, Tabl HAEM, Abed NT, Goudah ESS. Presepsin as a novel diagnostic marker in neonatal septicemia. Egypt J Med Microbiol. 2015;24(3):21–26. doi: 10.12816/0024924.
    1. Ta M, Khalaf FA, El Hendawy G, Kotb SE, Ali AM, El Sharnoby A. Soluble CD14-subtype (Prespsin) and Hepcidin as diagnostic and prognostic markers in early onset neonatal sepsis. Egypt J Med Microbiol. 2015;24(3):45–52. doi: 10.12816/0024928.
    1. Mussap M, Puxeddu E, Burrai P, et al. Soluble CD14 subtype (sCD14-ST) presepsin in critically ill preterm newborns: preliminary reference ranges. J Matern Fetal Neonatal Med. 2012;25(sup5):51–53. doi: 10.3109/14767058.2012.717462.
    1. Mussap M, Puxeddu E, Puddu M, et al. Soluble CD14 subtype (sCD14-ST) presepsin in premature and full term critically ill newborns with sepsis and SIRS. Clin Chim Acta. 2015;451:65–70. doi: 10.1016/j.cca.2015.07.025.
    1. Pugni Lorenza, Pietrasanta Carlo, Milani Silvano, Vener Claudia, Ronchi Andrea, Falbo Mariella, Arghittu Milena, Mosca Fabio. Presepsin (Soluble CD14 Subtype): Reference Ranges of a New Sepsis Marker in Term and Preterm Neonates. PLOS ONE. 2015;10(12):e0146020. doi: 10.1371/journal.pone.0146020.
    1. Miyosawa Yukihide, Akazawa Yohei, Kamiya Motoko, Nakamura Chizuko, Takeuchi Yusuke, Kusakari Mai, Nakamura Tomohiko. Presepsin as a predictor of positive blood culture in suspected neonatal sepsis. Pediatrics International. 2018;60(2):157–161. doi: 10.1111/ped.13469.
    1. Iskandar A, Arthamin MZ, Indriana K, et al. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis. J Matern Fetal Neonatal Med. 2018;1–6. Epub ahead of print
    1. Zheng Z, Jiang L, Ye L, Gao Y, Tang L, Zhang M. The accuracy of presepsin for the diagnosis of sepsis from SIRS: a systematic review and meta-analysis. Ann Intern Med. 2015;5(1):48.
    1. Gilfillan M, Bhandari V. Biomarkers for the diagnosis of neonatal sepsis and necrotizing enterocolitis: clinical practice guidelines. Early Hum Dev. 2017;105:25–33. doi: 10.1016/j.earlhumdev.2016.12.002.
    1. Stocker M, van Herk W, El Helou S, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns) Lancet. 2017;390:871–881. doi: 10.1016/S0140-6736(17)31444-7.
    1. Sarkar S, Bhagat I, Wiswell TE, Spitzer AR. Role of multiple site blood cultures to document the clearance of bacteremia in neonates. J Perinatol. 2007;27:101–102. doi: 10.1038/sj.jp.7211636.

Source: PubMed

3
Se inscrever