Identification of Iron Homeostasis Genes Dysregulation Potentially Involved in Retinopathy of Prematurity Pathogenicity by Microarray Analysis

Xian-Qiong Luo, Chun-Yi Zhang, Jia-Wen Zhang, Jing-Bo Jiang, Ai-Hua Yin, Li Guo, Chuan Nie, Xu-Zai Lu, Hua Deng, Liang Zhang, Xian-Qiong Luo, Chun-Yi Zhang, Jia-Wen Zhang, Jing-Bo Jiang, Ai-Hua Yin, Li Guo, Chuan Nie, Xu-Zai Lu, Hua Deng, Liang Zhang

Abstract

Retinopathy of prematurity (ROP) is a serious disease of preterm neonates and there are limited systematic studies of the molecular mechanisms underlying ROP. Therefore, here we performed global gene expression profiling in human fetal retinal microvascular endothelial cells (RMECs) under hypoxic conditions in vitro. Aborted fetuses were enrolled and primary RMECs were isolated from eyeballs. Cultivated cells were treated with CoCl2 to induce hypoxia. The dual-color microarray approach was adopted to compare gene expression profiling between treated RMECs and the paired untreated control. The one-class algorithm in significance analysis of microarray (SAM) software was used to screen the differentially expressed genes (DEGs) and quantitative RT-PCR (qRT-PCR) was conducted to validate the results. Gene Ontology was employed for functional enrichment analysis. There were 326 DEGs between the hypoxia-induced group and untreated group. Of these genes, 198 were upregulated in hypoxic RMECs, while the other 128 hits were downregulated. In particular, genes in the iron ion homeostasis pathway were highly enriched under hypoxic conditions. Our study indicates that dysregulation of genes involved in iron homeostasis mediating oxidative damage may be responsible for the mechanisms underlying ROP. The "oxygen plus iron" hypothesis may improve our understanding of ROP pathogenesis.

Figures

Figure 1
Figure 1
Confocal images of cultured human RMECs. (a) Immunofluorescent staining of vWF with sheep polyclonal antibody (Abcam). (b) Negative control of vWF identification. (c) Immunofluorescent staining of CD31 with mouse monoclonal antibody (Abcam). (d) Negative control of CD31 identification.
Figure 2
Figure 2
Growth curve of human RMECs treated with various concentration of CoCl2.
Figure 3
Figure 3
Heat map of gene expression pattern of five pairs of human RMEC subjects with dye-swap. The red color indicates upregulation and green color indicates downregulation. (a) Unsupervised clustering of 15,400 genes with a signal intensity >800 in matched RMEC samples. (b) A total of 326 (198 upregulated and 128 downregulated). DEGs in hypoxia-induced RMEC, compared with normoxia control (fold-change >2 and q < 0.05 with the SAM analysis).
Figure 4
Figure 4
Comparison of gene expression changes from microarray and qRT-PCR.

References

    1. Darlow B. A., Hutchinson J. L., Henderson-Smart D. J., Donoghue D. A., Simpson J. M., Evans N. J. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics. 2005;115(4):990–996. doi: 10.1542/peds.2004-1309.
    1. Husain S. M., Sinha A. K., Bunce C., et al. Relationships between maternal ethnicity, gestational age, birth weight, weight gain, and severe retinopathy of prematurity. The Journal of Pediatrics. 2013;163(1):67–72. doi: 10.1016/j.jpeds.2012.12.038.
    1. Pietrzyk J. J., Kwinta P., Bik-Multanowski M., et al. New insight into the pathogenesis of retinopathy of prematurity: assessment of whole-genome expression. Pediatric Research. 2013;73(4):476–483. doi: 10.1038/pr.2012.195.
    1. Reynaud X., Dorey C. K. Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat. Investigative Ophthalmology & Visual Science. 1994;35(8):3169–3177.
    1. Yuan Y., Hilliard G., Ferguson T., Millhorn D. E. Cobalt inhibits the interaction between hypoxia-inducible factor-α and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-α . Journal of Biological Chemistry. 2003;278(18):15911–15916. doi: 10.1074/jbc.m300463200.
    1. Xiaozhuang Z., Xianqiong L., Jingbo J., Shuiqing H., Jie Y., Yunbin C. Isolation and characterization of fetus human retinal microvascular endothelial cells. Ophthalmic Research. 2009;44(2):125–130. doi: 10.1159/000315364.
    1. Su X., Sorenson C. M., Sheibani N. Isolation and characterization of murine retinal endothelial cells. Molecular Vision. 2003;9:171–178.
    1. Uchida T., Rossignol F., Matthay M. A., et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells: implication of natural antisense HIF-1α . The Journal of Biological Chemistry. 2004;279(15):14871–14878. doi: 10.1074/jbc.M400461200.
    1. Wang G. L., Jiang B.-H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510.
    1. Yefimova M. G., Jeanny J.-C., Guillonneau X., et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Investigative Ophthalmology and Visual Science. 2000;41(8):2343–2351.
    1. He X., Hahn P., Iacovelli J., et al. Iron homeostasis and toxicity in retinal degeneration. Progress in Retinal and Eye Research. 2007;26(6):649–673. doi: 10.1016/j.preteyeres.2007.07.004.
    1. Shohat M., Reisner S. H., Krikler R., Nissenkorn I., Yassur Y., Ben-Sira I. Retinopathy of prematurity: incidence and risk factors. Pediatrics. 1983;72(2):159–163.
    1. Cooke R. W., Clark D., Hickey-Dwyer M., Weindling A. M. The apparent role of blood transfusions in the development of retinopathy of prematurity. European Journal of Pediatrics. 1993;152(10):833–836.
    1. Dani C., Reali M. F., Bertini G., Martelli E., Pezzati M., Rubaltelli F. F. The role of blood transfusions and iron intake on retinopathy of prematurity. Early Human Development. 2001;62(1):57–63. doi: 10.1016/S0378-3782(01)00115-3.
    1. Van Sorge A., Kerkhoff F., Halbertsma F. J., Schalij-Delfos N. Severe retinopathy of prematurity in twin-twin transfusion syndrome after multiple blood transfusions. Acta Ophthalmologica. 2014;92(2):e167–e168. doi: 10.1111/aos.12229.
    1. Hesse L., Eberl W., Schlaud M., Poets C. F. Blood transfusion. Iron load and retinopathy of prematurity. European Journal of Pediatrics. 1997;156(6):465–470. doi: 10.1007/s004310050641.
    1. Hirano K., Morinobu T., Kim H., et al. Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition. 2001;84(3):F188–F193. doi: 10.1136/fn.84.3.F188.
    1. Dennery P. A., Spitz D. R., Yang G., et al. Oxygen toxicity and iron accumulation in the lungs of mice lacking heme oxygenase-2. The Journal of Clinical Investigation. 1998;101(5):1001–1011. doi: 10.1172/jci448.
    1. Suttner D. M., Dennery P. A. Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. The FASEB Journal. 1999;13(13):1800–1809.
    1. Dennery P. A., Wong H. E., Sridhar K. J., Rodgers P. A., Sim J. E., Spitz D. R. Differences in basal and hyperoxia-associated HO expression in oxidant-resistant hamster fibroblasts. American Journal of Physiology: Lung Cellular and Molecular Physiology. 1996;271(4):L672–L679.
    1. Duvigneau J. C., Piskernik C., Haindl S., et al. A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction. Laboratory Investigation. 2008;88(1):70–77. doi: 10.1038/labinvest.3700691.
    1. Ursu O. N., Sauter M., Ettischer N., Kandolf R., Klingel K. Heme oxygenase-1 mediates oxidative stress and apoptosis in coxsackievirus B3-induced myocarditis. Cellular Physiology and Biochemistry. 2014;33(1):52–66. doi: 10.1159/000356649.
    1. Chen W., Hunt D. M., Lu H., Hunt R. C. Expression of antioxidant protective proteins in the rat retina during prenatal and postnatal development. Investigative Ophthalmology and Visual Science. 1999;40(3):744–751.
    1. Nie G., Sheftel A. D., Kim S. F., Ponka P. Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood. 2005;105(5):2161–2167. doi: 10.1182/blood-2004-07-2722.
    1. Lu Z., Nie G., Li Y., et al. Overexpression of mitochondrial ferritin sensitizes cells to oxidative stress via an iron-mediated mechanism. Antioxidants and Redox Signaling. 2009;11(8):1791–1803. doi: 10.1089/ars.2008.2306.
    1. Ryan T. P., Krzesicki R. F., Blakeman D. P., et al. Pulmonary ferritin: differential effects of hyperoxic lung injury on subunit mRNA levels. Free Radical Biology and Medicine. 1997;22(5):901–908. doi: 10.1016/s0891-5849(96)00483-2.
    1. Reif D. W. Ferritin as a source of iron for oxidative damage. Free Radical Biology and Medicine. 1992;12(5):417–427. doi: 10.1016/0891-5849(92)90091-t.
    1. Deans A. E., Wadghiri Y. Z., Bernas L. M., Yu X., Rutt B. K., Turnbull D. H. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magnetic Resonance in Medicine. 2006;56(1):51–59. doi: 10.1002/mrm.20914.
    1. Rouault T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature Chemical Biology. 2006;2(8):406–414. doi: 10.1038/nchembio807.
    1. Ghosh M. C., Tong W.-H., Zhang D., et al. Tempol-mediated activation of latent iron regulatory protein activity prevents symptoms of neurodegenerative disease in IRP2 knockout mice. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(33):12028–12033. doi: 10.1073/pnas.0805361105.
    1. Aisen P. Transferrin receptor 1. International Journal of Biochemistry and Cell Biology. 2004;36(11):2137–2143. doi: 10.1016/j.biocel.2004.02.007.
    1. Hentze M. W., Muckenthaler M. U., Andrews N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–297. doi: 10.1016/s0092-8674(04)00343-5.
    1. Semenza G. L. HIF-1, O2, and the 3 PHDs. How animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1–3. doi: 10.1016/s0092-8674(01)00518-9.
    1. Peyssonnaux C., Nizet V., Johnson R. S. Role of the hypoxia inducible factors in iron metabolism. Cell Cycle. 2008;7(1):28–32. doi: 10.4161/cc.7.1.5145.
    1. Lok C. N., Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. The Journal of Biological Chemistry. 1999;274(34):24147–24152. doi: 10.1074/jbc.274.34.24147.
    1. Tacchini L., Bianchi L., Bernelli-Zazzera A., Cairo G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. The Journal of Biological Chemistry. 1999;274(34):24142–24146. doi: 10.1074/jbc.274.34.24142.
    1. Dore-Duffy P., Balabanov R., Beaumont T., Hritz M. A., Harik S. I., Lamanna J. C. Endothelial activation following prolonged hypobaric hypoxia. Microvascular Research. 1999;57(2):75–85. doi: 10.1006/mvre.1998.2112.
    1. Zhao N., Zhang A.-S., Enns C. A. Iron regulation by hepcidin. The Journal of Clinical Investigation. 2013;123(6):2337–2343. doi: 10.1172/jci67225.
    1. Wallace D. F., Summerville L., Lusby P. E., Subramaniam V. N. First phenotypic description of transferrin receptor 2 knockout mouse, and the role of hepcidin. Gut. 2005;54(7):980–986. doi: 10.1136/gut.2004.062018.
    1. Martin P. M., Gnana-Prakasam J. P., Roon P., Smith R. G., Smith S. B., Ganapathy V. Expression and polarized localization of the hemochromatosis gene product HFE in retinal pigment epithelium. Investigative Ophthalmology and Visual Science. 2006;47(10):4238–4244. doi: 10.1167/iovs.06-0026.
    1. Kotamraju S., Tampo Y., Keszler A., et al. Nitric oxide inhibits H2O2-induced transferrin receptor-dependent apoptosis in endothelial cells: role of ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(19):10653–10658. doi: 10.1073/pnas.1933581100.
    1. Cervellati F., Cervellati C., Romani A., et al. Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radical Research. 2014;48(3):303–312. doi: 10.3109/10715762.2013.867484.

Source: PubMed

3
Se inscrever