Urgent reconsideration of lung edema as a preventable outcome in COVID-19: inhibition of TRPV4 represents a promising and feasible approach

Wolfgang M Kuebler, Sven-Eric Jordt, Wolfgang B Liedtke, Wolfgang M Kuebler, Sven-Eric Jordt, Wolfgang B Liedtke

Abstract

Lethality of coronavirus disease (COVID-19) during the 2020 pandemic, currently still in the exponentially accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We argue for inhibition of the transient receptor potential vanilloid 4 (TRPV4) calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in COVID-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in COVID-19 patients with respiratory malfunction and at risk for lung edema. Perplexingly, among the currently pursued therapeutic strategies against COVID-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce COVID-19 lethality but will also preempt a distressing healthcare scenario with insufficient capacity to provide ventilator-assisted respiration.

Keywords: COVID-19; SARS-CoV-2; TRPV4; TRPV4 inhibitor; pulmonary edema.

Conflict of interest statement

W. B. Liedtke cofounded TRPblue, a biotechnology start-up company that is aiming to commercialize TRPV4/TRPA1 dual-inhibitory compounds for treatment of chemotherapy-associated nerve pain and chronic allergic skin inflammation. Of note, none of TRPblue’s compounds would be suitable for the advocated approach because they await testing in humans and are intended for topical application to skin. S.-E. Jordt was supported by cooperative agreement U01ES015674 by the National Institutes of Health Countermeasures Against Chemical Threats (CounterACT) program to investigate the efficacy of TRPV4 inhibitors in models of chlorine inhalation injury. He received TRPV4 inhibitors from GlaxoSmithKline Pharmaceuticals for these studies. W. M. Kuebler does not have any conflicts of interest, financial or otherwise, to disclose.

Figures

Fig. 1.
Fig. 1.
Medical regimen based on three pillars, targeting the alveolo-capillary barrier of the lung feasible off the shelf. We favor a complementary approach to effectively manage coronavirus disease (COVID-19) and future coronavirus respiratory infections with high infectivity and significant lethality due to respiratory failure. Possibly a complimentary medical regimen could support a partially effective vaccine.
Fig. 2.
Fig. 2.
Alveolo-capillary barrier, transient receptor potential vanilloid 4 (TRPV4) expression, and proposed treatment with GSK2798745 in coronavirus disease (COVID-19). Note that TRPV4 expression and function might differ under lung infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As we argue, we believe that the benefits outweigh the risks, making possibly transformative therapeutic inroads against COVID-19 (at the individual patient and especially at the population health level) by protecting the alveolo-capillary barrier by inhibiting TRPV4. In clinical trials with early COVID-19 patients, daily oral dosing will be preferred. Injecting the compound will be reserved for more severely ill patients, with inhalatory application as additional treatment once a deterioration of lung barrier function has become clinically apparent. AT1 and AT2, alveolar type I and type II cells.

References

    1. Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99: 988–995, 2006. doi:10.1161/01.RES.0000247065.11756.19.
    1. Balakrishna S, Song W, Achanta S, Doran SF, Liu B, Kaelberer MM, Yu Z, Sui A, Cheung M, Leishman E, Eidam HS, Ye G, Willette RN, Thorneloe KS, Bradshaw HB, Matalon S, Jordt SE. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 307: L158–L172, 2014. doi:10.1152/ajplung.00065.2014.
    1. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. In press. doi:10.1016/S1473-3099(20)30195-X.
    1. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Nigoghossian C, Ageno W, Madjid M, Guo Y, Tang LV, Hu Y, Giri J, Cushman M, Quéré I, Dimakakos EP, Gibson CM, Lippi G, Favaloro EJ, Fareed J, Caprini JA, Tafur AJ, Burton JR, Francese DP, Wang EY, Falanga A, McLintock C, Hunt BJ, Spyropoulos AC, Barnes GD, Eikelboom JW, Weinberg I, Schulman S, Carrier M, Piazza G, Beckman JA, Steg PG, Stone GW, Rosenkranz S, Goldhaber SZ, Parikh SA, Monreal M, Krumholz HM, Konstantinides SV, Weitz JI, Lip GY. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. In press. doi:10.1016/j.jacc.2020.04.031.
    1. Brooks CA, Barton LS, Behm DJ, Eidam HS, Fox RM, Hammond M, Hoang TH, Holt DA, Hilfiker MA, Lawhorn BG, Patterson JR, Stoy P, Roethke TJ, Ye G, Zhao S, Thorneloe KS, Goodman KB, Cheung M. Discovery of GSK2798745: a clinical candidate for inhibition of transient receptor potential vanilloid 4 (TRPV4). ACS Med Chem Lett 10: 1228–1233, 2019. doi:10.1021/acsmedchemlett.9b00274.
    1. Chan KW, Wong VT, Tang SC. COVID-19: an update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-Western Medicine for the management of 2019 novel coronavirus disease. Am J Chin Med 48: 737–762, 2020. doi:10.1142/S0192415X20500378.
    1. Chow KC, Hsiao CH, Lin TY, Chen CL, Chiou SH. Detection of severe acute respiratory syndrome-associated coronavirus in pneumocytes of the lung. Am J Clin Pathol 121: 574–580, 2004. doi:10.1309/C0EDU0RAQBTXBHCE.
    1. ; U.S. National Library of Medicine . A First Time in Human Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of GSK2798745 in Healthy Subjects and Stable Heart Failure Patients. . 2018. [last updated September 27, 2018].
    1. ; U.S. National Library of Medicine . A Study to Assess the Effectiveness and Side Effects of GSK2798745 in Participants With Chronic Cough. . 2019. [last updated October 2, 2019].
    1. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T, Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA 117: 6771–6776, 2020. doi:10.1073/pnas.1922083117.
    1. Dutta B, Arya RK, Goswami R, Alharbi MO, Sharma S, Rahaman SO. Role of macrophage TRPV4 in inflammation. Lab Invest 100: 178–185, 2020. doi:10.1038/s41374-019-0334-6.
    1. Echtermeyer F, Eberhardt M, Risser L, Herzog C, Gueler F, Khalil M, Engel M, Vondran F, Leffler A. Acetaminophen-induced liver injury is mediated by the ion channel TRPV4. FASEB J 33: 10257–10268, 2019. doi:10.1096/fj.201802233R.
    1. Fedson DS, Opal SM, Rordam OM. Hiding in plain sight: an approach to treating patients with severe COVID-19 infection. MBio 11: e00398-20, 2020. doi:10.1128/mBio.00398-20.
    1. Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CD, Fukuoka J, Taubenberger JK, Travis WD. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 34: 743–748, 2003. doi:10.1016/S0046-8177(03)00367-8.
    1. Goldenberg NM, Ravindran K, Kuebler WM. TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn Schmiedebergs Arch Pharmacol 388: 421–436, 2015. doi:10.1007/s00210-014-1058-1.
    1. Goldenberg NM, Wang L, Ranke H, Liedtke W, Tabuchi A, Kuebler WM. TRPV4 is required for hypoxic pulmonary vasoconstriction. Anesthesiology 122: 1338–1348, 2015. doi:10.1097/ALN.0000000000000647.
    1. Goyal N, Skrdla P, Schroyer R, Kumar S, Fernando D, Oughton A, Norton N, Sprecher DL, Cheriyan J. Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects. Am J Cardiovasc Drugs 19: 335–342, 2019. doi:10.1007/s40256-018-00320-6.
    1. Grove LM, Mohan ML, Abraham S, Scheraga RG, Southern BD, Crish JF, Naga Prasad SV, Olman MA. Translocation of TRPV4-PI3Kγ complexes to the plasma membrane drives myofibroblast transdifferentiation. Sci Signal 12: eaau1533, 2019. doi:10.1126/scisignal.aau1533.
    1. Hamanaka K, Jian MY, Townsley MI, King JA, Liedtke W, Weber DS, Eyal FG, Clapp MM, Parker JC. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 299: L353–L362, 2010. doi:10.1152/ajplung.00315.2009.
    1. Hamanaka K, Jian MY, Weber DS, Alvarez DF, Townsley MI, Al-Mehdi AB, King JA, Liedtke W, Parker JC. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293: L923–L932, 2007. doi:10.1152/ajplung.00221.2007.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271–280.e8, 2020. doi:10.1016/j.cell.2020.02.052.
    1. Hsiao CH, Wu MZ, Chen CL, Hsueh PR, Hsieh SW, Yang PC, Su IJ. Evolution of pulmonary pathology in severe acute respiratory syndrome. J Formos Med Assoc 104: 75–81, 2005.
    1. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4: 159ra147, 2012. doi:10.1126/scitranslmed.3004249.
    1. Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 18: 1–10, 2005. doi:10.1038/modpathol.3800247.
    1. Ketai L, Paul NS, Wong KT. Radiology of severe acute respiratory syndrome (SARS): the emerging pathologic-radiologic correlates of an emerging disease. J Thorac Imaging 21: 276–283, 2006. doi:10.1097/01.rti.0000213581.14225.f1.
    1. Li J, Wen AM, Potla R, Benshirim E, Seebarran A, Benz MA, Henry OY, Matthews BD, Prantil-Baun R, Gilpin SE, Levy O, Ingber DE. AAV-mediated gene therapy targeting TRPV4 mechanotransduction for inhibition of pulmonary vascular leakage. APL Bioeng 3: 046103, 2019. doi:10.1063/1.5122967.
    1. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 14: 69–71, 2020. doi:10.5582/bst.2020.01020.
    1. Michalick L, Erfinanda L, Weichelt U, van der Giet M, Liedtke W, Kuebler WM. Transient receptor potential vanilloid 4 and serum glucocorticoid-regulated kinase 1 are critical mediators of lung injury in overventilated mice in vivo. Anesthesiology 126: 300–311, 2017. doi:10.1097/ALN.0000000000001443.
    1. Michalick L, Kuebler WM. TRPV4—a missing link between mechanosensation and immunity. Front Immunol 11: 413, 2020. doi:10.3389/fimmu.2020.00413.
    1. Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem 21: 730–738, 2020. doi:10.1002/cbic.202000047.
    1. Morty RE, Kuebler WM. TRPV4: an exciting new target to promote alveolocapillary barrier function. Am J Physiol Lung Cell Mol Physiol 307: L817–L821, 2014. doi:10.1152/ajplung.00254.2014.
    1. Pairet N, Mang S, Fois G, Keck M, Kühnbach M, Gindele J, Frick M, Dietl P, Lamb DJ. TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. PLoS One 13: e0196055, 2018. doi:10.1371/journal.pone.0196055.
    1. Radovanovic D, Rizzi M, Pini S, Saad M, Chiumello DA, Santus P. Helmet CPAP to treat acute hypoxemic respiratory failure in patients with COVID-19: a management strategy proposal. J Clin Med 9: 1191, 2020. doi:10.3390/jcm9041191.
    1. Rahaman SO, Grove LM, Paruchuri S, Southern BD, Abraham S, Niese KA, Scheraga RG, Ghosh S, Thodeti CK, Zhang DX, Moran MM, Schilling WP, Tschumperlin DJ, Olman MA. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J Clin Invest 124: 5225–5238, 2014. doi:10.1172/JCI75331.
    1. Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I, Joshi B, Hollenberg MD, Reddy SP, Mehta D. PAR2-mediated cAMP generation suppresses TRPV4-dependent Ca2+ signaling in alveolar macrophages to resolve TLR4-induced inflammation. Cell Rep 27: 793–805.e4, 2019. doi:10.1016/j.celrep.2019.03.053.
    1. Scheraga RG, Abraham S, Grove LM, Southern BD, Crish JF, Perelas A, McDonald C, Asosingh K, Hasday JD, Olman MA. TRPV4 protects the lung from bacterial pneumonia via MAPK molecular pathway switching. J Immunol 204: 1310–1321, 2020. doi:10.4049/jimmunol.1901033.
    1. Scheraga RG, Abraham S, Niese KA, Southern BD, Grove LM, Hite RD, McDonald C, Hamilton TA, Olman MA. TRPV4 mechanosensitive ion channel regulates lipopolysaccharide-stimulated macrophage phagocytosis. J Immunol 196: 428–436, 2016. doi:10.4049/jimmunol.1501688.
    1. Seth RK, Das S, Dattaroy D, Chandrashekaran V, Alhasson F, Michelotti G, Nagarkatti M, Nagarkatti P, Diehl AM, Bell PD, Liedtke W, Chatterjee S. TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radic Biol Med 102: 260–273, 2017. doi:10.1016/j.freeradbiomed.2016.11.047.
    1. Stewart GM, Johnson BD, Sprecher DL, Reddy YNV, Obokata M, Goldsmith S, Bart B, Oughton A, Fillmore C, Behm DJ, Borlaug BA. Targeting pulmonary capillary permeability to reduce lung congestion in heart failure: a randomized, controlled pilot trial. Eur J Heart Fail. In press. doi:10.1002/ejhf.1809.
    1. Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco-Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4: 159ra148, 2012. doi:10.1126/scitranslmed.3004276.
    1. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol 15: 700–704, 2020. doi:10.1016/j.jtho.2020.02.010.
    1. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395: 1417–1418, 2020. doi:10.1016/S0140-6736(20)30937-5.
    1. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30: 269–271, 2020. doi:10.1038/s41422-020-0282-0.
    1. Wikipedia Remdesivir (Online). [20 April 2020].
    1. Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout RE, Votta BJ, Thorneloe K, Lashinger ES, Figueroa DJ, Marquis R, Xu X. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J Pharmacol Exp Ther 326: 443–452, 2008. doi:10.1124/jpet.107.134551.
    1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 94: 91–95, 2020. doi:10.1016/j.ijid.2020.03.017.
    1. Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baeurle J, Liedtke W, Wu S, Kuppe H, Pries AR, Kuebler WM. Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 102: 966–974, 2008. doi:10.1161/CIRCRESAHA.107.168724.
    1. Yin J, Michalick L, Tang C, Tabuchi A, Goldenberg N, Dan Q, Awwad K, Wang L, Erfinanda L, Nouailles G, Witzenrath M, Vogelzang A, Lv L, Lee WL, Zhang H, Rotstein O, Kapus A, Szaszi K, Fleming I, Liedtke WB, Kuppe H, Kuebler WM. Role of transient receptor potential vanilloid 4 in neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 54: 370–383, 2016. doi:10.1165/rcmb.2014-0225OC.
    1. Yu Q, Wang D, Wen X, Tang X, Qi D, He J, Zhao Y, Deng W, Zhu T. Adipose-derived exosomes protect the pulmonary endothelial barrier in ventilator-induced lung injury by inhibiting the TRPV4/Ca2+ signaling pathway. Am J Physiol Lung Cell Mol Physiol 318: L723–L741, 2020. doi:10.1152/ajplung.00255.2019.
    1. Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, Liedtke W, Jimenez-Vargas NN, Vanner SJ, Bunnett NW. Neutrophil elastase activates protease-activated receptor-2 (PAR2) and transient receptor potential vanilloid 4 (TRPV4) to cause inflammation and pain. J Biol Chem 290: 13875–13887, 2015. doi:10.1074/jbc.M115.642736.
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395: 1054–1062, 2020. doi:10.1016/S0140-6736(20)30566-3.

Source: PubMed

3
Se inscrever