Association of Macronutrients Composition, Physical Activity and Serum Androgen Concentration in Young Women with Polycystic Ovary Syndrome

Małgorzata Mizgier, Rafał Watrowski, Justyna Opydo-Szymaczek, Elżbieta Jodłowska-Siewert, Giovanni Lombardi, Witold Kędzia, Grażyna Jarząbek-Bielecka, Małgorzata Mizgier, Rafał Watrowski, Justyna Opydo-Szymaczek, Elżbieta Jodłowska-Siewert, Giovanni Lombardi, Witold Kędzia, Grażyna Jarząbek-Bielecka

Abstract

The roles of dietary macronutrients and physical activity (PA) in patients with PCOS have not been sufficiently reported, especially in adolescent girls. To address this knowledge gap, we evaluated the associations between serum concentrations of total testosterone (tT), free testosterone (fT), androstenedione (A), dehydroepiandrosterone-sulfate (DHEA-S), sex hormone-binding globulin (SHBG) and dietary macronutrients intake as well as different types and levels of PA. The study population consisted of 96 girls of Caucasian ancestry, aged 14-18 years: 61 participants with polycystic ovary syndrome (PCOS) and 35 healthy controls. Serum tT, fT, A, DHEA-S, and SHBG were determined in fasting blood. Macronutrient intake and PA levels were assessed by using the three-day food record method and the Beliefs and Eating Habits Questionnaire (KomPAN), respectively. We found several positive correlations between dietary macronutrients such as total fat, saturated fatty acids (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), and hormonal parameters across the entire cohort and in healthy girls. A positive correlation between SHBG and total protein consumption as well as an inverse correlation between SHBG and carbohydrate intake could be determined. No correlation between androgens and macronutrients was found in the PCOS group. In contrast, we observed an inverse correlation between androgen concentrations (except of DHEA-S) and "work/school" and/or "leisure time" PA only in PCOS patients. Moreover, the hormone levels differed according to PA intensity. In conclusion, the impact of diet and PA was strikingly different in adolescents with and without PCOS. These findings indicate that disturbed hormonal homeostasis in PCOS, at least in the youngest patients, likely "overtrump" dietary influences, and otherwise, PA offers a therapeutic potential that requires further evaluation of the long-term effects in randomized studies. (ClinicalTrial.gov Identifier: NCT04738409.).

Keywords: adolescent girls; adolescents; diet; hyperandrogenism; macronutrients; nutrition; physical activity; polycystic ovary syndrome.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Median (25–75%) values of sex hormones in PCOS and CONTROL groups. p values are included when hormone concentrations significantly differed between the two groups.
Figure 2
Figure 2
Median (25–75%) of sex hormone concentrations in groups with low, moderate or high PA (leisure). Significant differences are marked by an asterisk (*).
Figure 3
Figure 3
Median (25–75%) of sex hormone concentrations in groups with low, moderate or high PA (work/school). Significant differences are marked by an asterisk (*).

References

    1. Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L., Piltonen T., Norman R.J. International PCOS Network. Recomendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018;33:1602–1618. doi: 10.1093/humrep/dey256.
    1. Teede H., Deeks A., Moran L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41. doi: 10.1186/1741-7015-8-41.
    1. Azziz R., Carmina E., Chen Z., Dunaif A., Laven J.S., Legro R.S., Lizneva D., Natterson-Horowtiz B., Teede H.J., Yildiz B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers. 2016;2:16057. doi: 10.1038/nrdp.2016.57.
    1. Naz M.S.G., Tehrani F.R., Majd H.A., Ahmadi F., Ozgoli G., Fakari F.R., Ghasemi V. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis. Int. J. Reprod. Biomed. 2019;17:533–542.
    1. Barrea L., Frias-Toral E., Verde L., Ceriani F., Cucalón G., Garcia-Velasquez E., Moretti D., Savastano S., Colao A., Muscogiuri G. PCOS and nutritional approaches: Differences between lean and obese phenotype. Metab. Open. 2021;12:100123. doi: 10.1016/j.metop.2021.100123.
    1. Lizneva D., Suturina L., Walker W., Brakta S., Gavrilova-Jordan L., Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016;106:6–15. doi: 10.1016/j.fertnstert.2016.05.003.
    1. Anagnostis P., Tarlatzis B.C., Kauffman R.P. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism. 2018;86:33–43. doi: 10.1016/j.metabol.2017.09.016.
    1. Sirmans S.M., Pate K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol. 2013;6:1–13. doi: 10.2147/CLEP.S37559.
    1. Teede H.J., Joham A.E., Paul E., Moran L.J., Loxton D., Jolley D., Lombard C. Longitudinal weight gain in women identified with polycystic ovary syndrome: Results of an observational study in young women. Obesity. 2013;21:1526–1532. doi: 10.1002/oby.20213.
    1. Greenwood E.A., Kao C.-N., Cedars M.I., Huddleston H.G. On your feet: Is sitting time linked to adverse metabolic profiles in polycystic ovary syndrome, independent of exercise? Fertil. Steril. 2017;107:e40–e41. doi: 10.1016/j.fertnstert.2017.02.077.
    1. Turner-Mcgrievy G., Davidson C.R., Billings D.L. Dietary intake, eating behaviors, and quality of life in women with polycystic ovary syndrome who are trying to conceive. Hum. Fertil. 2014;18:16–21. doi: 10.3109/14647273.2014.922704.
    1. Goodman N.F., Cobin R.H., Futterweit W., Glueck J.S., Legro R.S., Carmina E. Guide to the Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome: Part 1. Endocr Pract. 2015;21:1291–1300. doi: 10.4158/EP15748.DSC.
    1. Sepilian V.P., Crochet J.R., Nagamani M. Serum soluble leptin receptor levels and free leptin index in women with polycystic ovary syndrome: Relationship to insulin resistance and androgens. Fertil. Steril. 2006;85:1441–1447. doi: 10.1016/j.fertnstert.2005.10.038.
    1. Peña A.S., Witchel S.F., Hoeger K.M., Oberfield S.E., Vogiatzi M.G., Misso M., Garad R., Dabadghao P., Teede H. Adolescent polycystic ovary syndrome according to the international evidence-based guideline. BMC Med. 2020;18:72. doi: 10.1186/s12916-020-01516-x.
    1. Tay C.T., Hart R.J., Hickey M., Moran L.J., Earnest A., Doherty D.A., Teede H.J., Joham A.E. Updated adolescent diagnostic criteria for polycystic ovary syndrome: Impact on prevalence and longitudinal body mass index trajectories from birth to adulthood. BMC Med. 2020;18:389. doi: 10.1186/s12916-020-01861-x.
    1. Witchel S.F., Oberfield S.E., Peña A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J. Endocr. Soc. 2019;3:1545–1573. doi: 10.1210/js.2019-00078.
    1. Vryonidou A., Paschou S.A., Muscogiuri G., Orio F., Goulis D.G. Mechanisms in endocrinology: Metabolic syndrome through the female life cycle. Eur. J. Endocrinol. 2015;173:R153–R163. doi: 10.1530/EJE-15-0275.
    1. Satyaraddi A., Cherian K., Kapoor N., Kunjummen A., Kamath M., Thomas N. Body composition, metabolic characteristics, and insulin resistance in obese and nonobese women with polycystic ovary syndrome. J. Hum. Reprod. Sci. 2019;12:78–84.
    1. Lorenz L.B., Wild R.A. Polycystic ovarian syndrome: An evidence-based approach to evaluation and management of diabetes and cardiovascular risks for today’s clinician. Clin. Obstet. Gynecol. 2007;50:226–243. doi: 10.1097/GRF.0b013e31802f5197.
    1. Norman R.J., Davies M.J., Lord J., Moran L.J. The role of lifestyle modification in polycystic ovary syndrome. Trends Endocrinol. Metab. 2002;13:251–257. doi: 10.1016/S1043-2760(02)00612-4.
    1. Álvarez-Blasco F., Luque-Ramírez M., Escobar-Morreale H.F. Diet composition and physical activity in overweight and obese premenopausal women with or without polycystic ovary syndrome. Gynecol. Endocrinol. 2011;27:978–981. doi: 10.3109/09513590.2011.579658.
    1. Perelman D., Coghlan N., Lamendola C., Carter S., Abbasi F., McLaughlin T. Substituting poly- and mono-unsaturated fat for dietary carbohydrate reduces hyperinsulinemia in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2016;33:324–327. doi: 10.1080/09513590.2016.1259407.
    1. Ciebiera M., Esfandyari S., Siblini H., Prince L., Elkafas H., Wojtyła C., Al-Hendy A., Ali M. Nutrition in gynecological diseases: Current perspectives. Nutrients. 2021;13:1178. doi: 10.3390/nu13041178.
    1. Afrin S., Alashqar A., El Sabeh M., Reschke L., Brennan J.T., Fader A., Borahay M. Diet and nutrition in gynecological disorders: A focus on clinical studies. Nutrients. 2021;13:1747. doi: 10.3390/nu13061747.
    1. Moran L.J., Ko H., Misso M., Marsh K., Noakes M., Talbot M., Frearson M., Thondan M., Stepto N., Teede H. Dietary Composition in the Treatment of Polycystic Ovary Syndrome: A Systematic Review to Inform Evidence-Based Guidelines. J. Acad. Nutr. Diet. 2013;113:520–545. doi: 10.1016/j.jand.2012.11.018.
    1. Phelan N., O’Connor A., Tun T.K., Correia N., Boran G., Roche H.M., Gibney J. Hormonal and metabolic effects of polyunsaturated fatty acids in young women with polycystic ovary syndrome: Results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 2011;93:652–662. doi: 10.3945/ajcn.110.005538.
    1. Eleftheriadou M., Stefanidis K., Lykeridou K., Iliadis I., Michala L. Dietary habits in adolescent girls with polycystic ovarian syndrome. Gynecol. Endocrinol. 2014;31:269–271. doi: 10.3109/09513590.2014.984677.
    1. Eleftheriadou M., Michala L., Stefanidis K., Iliadis I., Lykeridou A., Antsaklis A. Exercise and Sedentary Habits Among Adolescents with PCOS. J. Pediatric Adolesc. Gynecol. 2012;25:172–174. doi: 10.1016/j.jpag.2011.11.009.
    1. Cui X., Rosner B., Willett W.C., Hankinson S.E. Dietary Fat, Fiber, and Carbohydrate Intake and Endogenous Hormone Levels in Premenopausal Women. Horm. Cancer. 2010;1:265–276. doi: 10.1007/s12672-010-0050-6.
    1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Hum. Reprod. 2004;19:41–47. doi: 10.1093/humrep/deh098.
    1. Mizgier M., Jarząbek-Bielecka G., Formanowicz D., Jodłowska-Siewert E., Mruczyk K., Cisek-Woźniak A., Cisek-Woźniak A., Kędzia W., Opydo-Szymaczek J. Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy. J. Clin. Med. 2021;10:3469. doi: 10.3390/jcm10163469.
    1. Mizgier M., Jarząbek-Bielecka G., Opydo-Szymaczek J., Wendland N., Więckowska B., Kędzia W. Risk Factors of Overweight and Obesity Related to Diet and Disordered Eating Attitudes in Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. J. Clin. Med. 2020;9:3041. doi: 10.3390/jcm9093041.
    1. Wendland N., Opydo-Szymaczek J., Formanowicz D., Blacha A., Jarząbek-Bielecka G., Mizgier M. Association between metabolic and hormonal profile, proinflammatory cytokines in saliva and gingival health in adolescent females with polycystic ovary syndrome. BMC Oral Health. 2021;21:193. doi: 10.1186/s12903-021-01553-9.
    1. Wendland N., Opydo-Szymaczek J., Mizgier M., Jarząbek-Bielecka G. Subgingival microflora in adolescent females with polycystic ovary syndrome and its association with oral hygiene, gingivitis, and selected metabolic and hormonal parameters. Clin. Oral Investig. 2021;25:1485–1496. doi: 10.1007/s00784-020-03456-5.
    1. Mizgier M., Jarząbek-Bielecka G., Wendland N., Jodłowska-Siewert E., Nowicki M., Brożek A., Kędzia W., Formanowicz D., Opydo-Szymaczek J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients. 2021;13:896. doi: 10.3390/nu13030896.
    1. Kowalkowska J., Wadolowska L., Czarnocinska J., Czlapka-Matyasik M., Galinski G., Jezewska-Zychowicz M., Bronkowska M., Dlugosz A., Loboda D., Wyka J. Reproducibility of a questionnaire for dietary habits, lifestyle and nutrition knowledge assessment (KomPAN) in Polish adolescents and adults. Nutrients. 2018;10:1845. doi: 10.3390/nu10121845.
    1. Ballerini M.G., Gaido V., Rodríguez M.E., Chiesa A., Ropelato M.G. Prospective and Descriptive Study on Serum Androstenedione Concentration in Healthy Children from Birth until 18 Years of Age and Its Associated Factors. Dis. Markers. 2017;2017:9238304. doi: 10.1155/2017/9238304.
    1. Forrester-Dumont K., Galescu O., Kolesnikov A., RAissouni N., Bhangoo A., Ten S., Suss A. Hyperandrogenism does not influence metabolic parameters in adolescent girls with PCOS. Int. J. Endocrinol. 2012;2012:434830. doi: 10.1155/2012/434830.
    1. Orio F., Muscogiuri G., Ascione A., Marciano F., Volpe A., La Sala G., Colao A., Palomba S. Effects of physical exercise on the female reproductive system. Minerva Endocrinol. 2013;38:305–319.
    1. Whittaker J., Wu K. Low-fat diets and testosterone in men: Systematic review and meta-analysis of intervention studies. J. Steroid Biochem. Mol. Biol. 2021;210:105878. doi: 10.1016/j.jsbmb.2021.105878.
    1. Wang C., Catlin D.H., Starcevic B., Heber D., Ambler C., Berman N., Lucas G., Leung A., Schramm K., Lee P.W.N., et al. Low-fat high-fiber diet decreased serum and urine androgens in men. J. Clin. Endocrinol. Metab. 2005;90:3550–3559. doi: 10.1210/jc.2004-1530.
    1. Dorgan J.F., Judd J.T., Longcope C., Brown C., Schatzkin A., Clevidence B.A., Campbell W.S., Nair P.P., Franz C., Kahle L., et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: A controlled feeding study. Am. J. Clin. Nutr. 1996;64:850–855. doi: 10.1093/ajcn/64.6.850.
    1. Mai K., Bobbert T., Kullmann V., Andres J., Rochlitz H., Osterhoff M., Weickert M.O., Bähr V., Mohlig M., Pfeiffer A.F.H., et al. Free fatty acids increase androgen precursors in vivo. J. Clin. Endocrinol. Metab. 2006;91:1501–1507. doi: 10.1210/jc.2005-2069.
    1. Mai K., Bobbert T., Reinecke F., Andres J., Bähr V., Maser-Gluth C., Schulte H., Diederich S., Pfeiffer A.F., Spranger J. Free fatty acids increase androgen precursors in vivo in young healthy women. Exp. Clin. Endocrinol. Diabetes. 2007;115:P02–P42. doi: 10.1055/s-2007-972449.
    1. Faghfoori Z., Fazelian S., Shadnoush M., Goodarzi R. Nutritional management in women with polycystic ovary syndrome: A review study. Diabetes Metab. Syndr. Clin. Res. Rev. 2017;11:S429–S432. doi: 10.1016/j.dsx.2017.03.030.
    1. Parker D.R., Weiss S.T., Troisi R., Cassano P.A., Vokonas P.S., Landsberg L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: The normative aging study. Am. J. Clin. Nutr. 1993;58:129–136. doi: 10.1093/ajcn/58.2.129.
    1. Katcher H.I., Kunselman A.R., Dmitrovic R., Demers L.M., Gnatuk C.L., Kris-Etherton P.M., Legro R.S. Comparison of hormonal and metabolic markers after a high-fat, Western meal versus a low-fat, high-fiber meal in women with polycystic ovary syndrome. Fertil. Steril. 2009;91:1175–1182. doi: 10.1016/j.fertnstert.2008.01.035.
    1. Kalgaonkar S., Almario R.U., Gurusinghe D., Garamendi E.M., Buchan W., Kim K., Karakas S.E. Differential effects of walnuts vs almonds on improving metabolic and endocrine parameters in PCOS. Eur. J. Clin. Nutr. 2011;65:386–393. doi: 10.1038/ejcn.2010.266.
    1. Yuan J., Wen X., Jia M. Efficacy of omega-3 polyunsaturated fatty acids on hormones, oxidative stress, and inflammatory parameters among polycystic ovary syndrome: A systematic review and meta-analysis. Ann. Palliat. Med. 2021;10:8991–9001. doi: 10.21037/apm-21-2018.
    1. Barrea L., Arnone A., Annunziata G., Muscogiuri G., Laudisio D., Salzano C., Pugliese G., Colao A., Savastano S. Adherence to the mediterranean diet, dietary patterns and body composition in women with polycystic ovary syndrome (PCOS) Nutrients. 2019;11:2278. doi: 10.3390/nu11102278.
    1. Kasim-Karakas S.E., Almario R.U., Gregory L., Wong R., Todd H., Lasley B.L. Metabolic and Endocrine Effects of a Polyunsaturated Fatty Acid-Rich Diet in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2004;89:615–620. doi: 10.1210/jc.2003-030666.
    1. Hajishafiee M., Askari G., Iranj B., Ghiasvand R., Bellissimo N., De Zepetnek J.T., Salehi-Abargouei A. The Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Androgen Status in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Clinical Trials. Horm. Metab. Res. 2016;48:281–289. doi: 10.1055/s-0042-105288.
    1. Gower B.A., Chandler-Laney P.C., Ovalle F., Goree L.L., Azziz R., Desmond R.A., Granger W.M., Goss A.M., Bates G.W. Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin. Endocrinol. 2013;79:550–557. doi: 10.1111/cen.12175.
    1. Douglas C.C., Gower B.A., Darnell B.E., Ovalle F., Oster R.A., Azziz R. Role of diet in the treatment of polycystic ovary syndrome. Fertil. Steril. 2006;85:679–688. doi: 10.1016/j.fertnstert.2005.08.045.
    1. Mavropoulos J.C., Yancy W.S., Hepburn J., Westman E.C. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: A pilot study. Nutr. Metab. 2005;2:35. doi: 10.1186/1743-7075-2-35.
    1. Neves L.P.P., Marcondes R.R., Maffazioli G.D.N., Simões R.S., Maciel G.A.R., Soares J.M., Baracat E.C. Nutritional and dietary aspects in polycystic ovary syndrome: Insights into the biology of nutritional interventions. Gynecol. Endocrinol. 2020;36:1047–1050. doi: 10.1080/09513590.2020.1822797.
    1. Connolly A., Leblanc S., Baillargeon J.P. Role of lipotoxicity and contribution of the renin-angiotensin system in the development of polycystic ovary syndrome. Int. J. Endocrinol. 2018;2018:4315413. doi: 10.1155/2018/4315413.
    1. Mehrabani H.H., Salehpour S., Meyer B.J., Tahbaz F. Beneficial effects of a high-protein, low-glycemic-load hypocaloric diet in overweight and obese women with polycystic ovary syndrome: A randomized controlled intervention study. J. Am. Coll. Nutr. 2012;31:117–125. doi: 10.1080/07315724.2012.10720017.
    1. Cutler D.A., Pride S.M., Cheung A.P. Low intakes of dietary fiber and magnesium are associated with insulin resistance and hyperandrogenism in polycystic ovary syndrome: A cohort study. Food Sci. Nutr. 2019;7:1426–1437. doi: 10.1002/fsn3.977.
    1. Björck I., Elmståhl H.L. The glycaemic index: Importance of dietary fibre and other food properties. Proc. Nutr. Soc. 2003;62:201–206. doi: 10.1079/PNS2002239.
    1. Moran L.J., Noakes M., Clifton P.M., Tomlinson L., Norman R.J. Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2003;88:812–819. doi: 10.1210/jc.2002-020815.
    1. Lin A.W., Siscovick D., Sternfeld B., Schreiner P., Lewis C.E., Wang E.T., Merkin S.S., Wellons M., Steffen L., Calderon-Margalit R., et al. Associations of diet, physical activity and polycystic ovary syndrome in the Coronary Artery Risk Development in Young Adults Women’s Study. BMC Public Health. 2021;21:35. doi: 10.1186/s12889-020-10028-5.
    1. Shele G., Genkil J., Speelman D. A systematic review of the effects of exercise on hormones in women with polycystic ovary syndrome. J. Funct. Morphol. Kinesiol. 2020;5:35. doi: 10.3390/jfmk5020035.
    1. Abdolahian S., Tehrani F.R., Amiri M., Ghodsi D., Yarandi R.B., Jafari M., Majd H.A., Nahidi F. Effect of lifestyle modifications on anthropometric, clinical, and biochemical parameters in adolescent girls with polycystic ovary syndrome: A systematic review and meta-analysis. BMC Endocr. Disord. 2020;20:71. doi: 10.1186/s12902-020-00552-1.
    1. Lombardi G., Ziemann E., Banfi G., Corbetta S. Physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. Int. J. Mol. Sci. 2020;21:5388. doi: 10.3390/ijms21155388.
    1. Lane A.R., Hackney A.C. Relationship between salivary and serum testosterone levels in response to different exercise intensities. Hormones. 2015;14:258–264.
    1. Hayes L.D., Grace F.M., Baker J.S., Sculthorpe N. Exercise-Induced Responses in Salivary Testosterone, Cortisol, and Their Ratios in Men: A Meta-Analysis. Sports Med. 2015;45:713–726. doi: 10.1007/s40279-015-0306-y.

Source: PubMed

3
Se inscrever