Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy

Małgorzata Mizgier, Grażyna Jarząbek-Bielecka, Dorota Formanowicz, Elżbieta Jodłowska-Siewert, Kinga Mruczyk, Angelika Cisek-Woźniak, Witold Kędzia, Justyna Opydo-Szymaczek, Małgorzata Mizgier, Grażyna Jarząbek-Bielecka, Dorota Formanowicz, Elżbieta Jodłowska-Siewert, Kinga Mruczyk, Angelika Cisek-Woźniak, Witold Kędzia, Justyna Opydo-Szymaczek

Abstract

The role of inappropriate lifestyle in the etiology of polycystic ovary syndrome (PCOS) and its metabolic and reproductive complications has attracted much attention in recent years; however, most studies involve adult patients. Thus, the study aimed to compare dietary patterns, physical activity, metabolic, anthropometric and inflammatory markers of 14-18-year-old girls with and without PCOS (n = 61 and n = 35, respectively) as well as to assess correlations between concentrations of metabolic and inflammatory markers and macronutrient intake and to identify the independent predictors of PCOS, related to diet and physical activity (PA). Compared to the control group, PCOS girls consumed significantly more total fat (p = 0.0005), including both saturated (SFA) (p = 0.03), monounsaturated (MUFA) (p = 0.0003) and polyunsaturated fatty acids (PUFA) (p = 0.01). A significantly higher percentage of PCOS patients consumed high and medium glycemic index (GI) foods (p = 0.03) and represented a low level of PA, both during school and in leisure time (41.67 vs. 6.06%; p = 0.0001 and 32.79 vs. 5.71%; p = 0.003, respectively). The PCOS group had also significantly higher waist circumference (WC), C-reactive protein (CRP) (p = 0.01), LDL cholesterol (p = 0.01), fasting insulin (p = 0.002) and HOMA-IR (p = 0.006) levels. There was an inverse correlation between fiber intake and fasting insulin, (p = 0.0002, r = -0.37), HOMA-IR (p = 0.0004, r = -0.35), WC (p = 0.029; r = -0.222) and a positive relationship between high and medium GI diet and insulin concentration (p = 0.003; r = 0.3). An increase of 10 g/day in total fat intake per day increases the probability of PCOS by 1.4 times. If the SFA or MUFA intakes increase by 10 g, the probability of PCOS increase 1.7-fold and 2.5-fold, respectively. The consumption of foods with a medium GI raises the probability of PCOS by more than 3 times, after adjusting for age. The odds ratio decreased for the moderate and high PA at school/work and in leisure time. Further research in girls with PCOS is needed to test whether low GI and dietary fatty acid reduction combined with increased PA is effective in the nonpharmacological treatment and prevention of PCOS complications. ClinicalTrial.gov Identifier: NCT04738409.

Keywords: diet; healthy lifestyle; nutrition; physical activity; polycystic ovary syndrome.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Naz M.S.G., Tehrani F.R., Majd H.A., Ahmadi F., Ozgoli G., Fakari F.R., Ghasemi V. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis. Int. J. Reprod. Biomed. 2019;17:533–542. doi: 10.18502/ijrm.v17i8.4818.
    1. Sam S., Dunaif A. Polycystic ovary syndrome: Syndrome XX? Trends Endocrinol. Metab. 2003;14:365–370. doi: 10.1016/j.tem.2003.08.002.
    1. Zhao X., Jiang Y., Xi H., Chen L., Feng X. Exploration of the Relationship Between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): A Review. Geburtshilfe Frauenheilkd. 2020;80:161–171. doi: 10.1055/a-1081-2036.
    1. Goodman N.F., Cobin R.H., Futterweit W., Glueck J.S., Legro R., Carmina E. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: Guide to the Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome—Part 1. Endocr. Pract. 2015;21:1291–1300. doi: 10.4158/EP15748.DSC.
    1. Khashchenko E., Vysokikh M., Uvarova E., Krechetova L., Vtorushina V., Ivanets T., Volodina M., Tarasova N., Sukhanova I., Sukhikh G. Activation of Systemic Inflammation and Oxidative Stress in Adolescent Girls with Polycystic Ovary Syndrome in Combination with Metabolic Disorders and Excessive Body Weight. J. Clin. Med. 2020;9:1399. doi: 10.3390/jcm9051399.
    1. Wendland N., Opydo-Szymaczek J., Mizgier M., Jarząbek-Bielecka G. Subgingival microflora in adolescent females with polycystic ovary syndrome and its association with oral hygiene, gingivitis, and selected metabolic and hormonal parameters. Clin. Oral Investig. 2021;25:1485–1496. doi: 10.1007/s00784-020-03456-5.
    1. Wendland N., Opydo-Szymaczek J., Formanowicz D., Blacha A., Jarząbek-Bielecka G., Mizgier M. Association between metabolic and hormonal profile, proinflammatory cytokines in saliva and gingival health in adolescent females with polycystic ovary syndrome. BMC Oral Health. 2021;21:193. doi: 10.1186/s12903-021-01553-9.
    1. Deans R. Polycystic Ovary Syndrome in Adolescence. Med. Sci. 2019;7:101. doi: 10.3390/medsci7100101.
    1. Rosenfield R.L., Ehrmann D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016;37:467–520. doi: 10.1210/er.2015-1104.
    1. Rosenfield R.L. The Diagnosis of Polycystic Ovary Syndrome in Adolescents. Pediatrics. 2015;136:1154–1165. doi: 10.1542/peds.2015-1430.
    1. Kumari S., Pankaj S., Kavita K., Choudhary V., Raghwendra K.H. Study of Adolescent Girls with Irregularities for Polycystic Ovaries and Insulin Resistance. J. Evol. Med. Dent. Sci. 2015;4:5472–5483. doi: 10.14260/jemds/2015/802.
    1. Dumesic D.A., Oberfield S.E., Stener-Victorin E., Marshall J.C., Laven J.S., Legro R.S. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr. Rev. 2015;36:487–525. doi: 10.1210/er.2015-1018.
    1. Ciebiera M., Esfandyari S., Siblini H., Prince L., Elkafas H., Wojtyła C., Al-Hendy A., Ali M. Nutrition in Gynecological Diseases: Current Perspectives. Nutrients. 2021;13:1178. doi: 10.3390/nu13041178.
    1. Greenwood E.A., Kao C.-N., Cedars M.I., Huddleston H.G. On your feet: Is sitting time linked to adverse metabolic profiles in polycystic ovary syndrome, independent of exercise? Fertil. Steril. 2017;107:e40–e41. doi: 10.1016/j.fertnstert.2017.02.077.
    1. Moran L.J., Tassone E.C., Boyle J., Brennan L., Harrison C.L., Hirschberg A.L., Lim S., Marsh K., Misso M.L., Redman L., et al. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: Lifestyle management. Obes. Rev. 2020;21:e13046. doi: 10.1111/obr.13046.
    1. Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L., Piltonen T., Norman R.J. International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018;33:1602–1618. doi: 10.1093/humrep/dey256.
    1. Stamets K., Taylor D.S., Kunselman A., Demers L.M., Pelkman C.L., Legro R.S. A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil. Steril. 2004;81:630–637. doi: 10.1016/j.fertnstert.2003.08.023.
    1. Altieri P., Cavazza C., Pasqui F., Morselli A.M., Gambineri A., Pasquali R. Dietary habits and their relationship with hormones and metabolism in overweight and obese women with polycystic ovary syndrome. Clin. Endocrinol. 2012;78:52–59. doi: 10.1111/j.1365-2265.2012.04355.x.
    1. Teede H.J., Joham A.E., Paul E., Moran L., Loxton D., Jolley D., Lombard C. Longitudinal weight gain in women identified With polycystic ovary syndrome: Results of an observational study in young women. Obesity. 2013;21:1526–1532. doi: 10.1002/oby.20213.
    1. Eleftheriadou M., Michala L., Stefanidis K., Iliadis I., Lykeridou A., Antsaklis A. Exercise and Sedentary Habits Among Adolescents with PCOS. J. Pediatr. Adolesc. Gynecol. 2012;25:172–174. doi: 10.1016/j.jpag.2011.11.009.
    1. Mizgier M., Jarząbek-Bielecka G., Opydo-Szymaczek J., Wendland N., Więckowska B., Kędzia W. Risk Factors of Overweight and Obesity Related to Diet and Disordered Eating Attitudes in Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. J. Clin. Med. 2020;9:3041. doi: 10.3390/jcm9093041.
    1. Mizgier M., Jarząbek-Bielecka G., Wendland N., Jodłowska-Siewert E., Nowicki M., Brożek A., Kędzia W., Formanowicz D., Opydo-Szymaczek J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients. 2021;13:896. doi: 10.3390/nu13030896.
    1. Stepto N.K., Patten R.K., Tassone E.C., Misso M.L., Brennan L., Boyle J., Boyle R.A., Harrison C.L., Hirschberg A.L., Marsh K., et al. Exercise Recommendations for Women with Polycystic Ovary Syndrome: Is the Evidence Enough? Sports Med. 2019;49:1143–1157. doi: 10.1007/s40279-019-01133-6.
    1. Kazemi M., Hadi A., Pierson R.A., Lujan M.E., Zello G.A., Chilibeck P.D. Effects of Dietary Glycemic Index and Glycemic Load on Cardiometabolic and Reproductive Profiles in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv. Nutr. 2021;12:161–178. doi: 10.1093/advances/nmaa092.
    1. Azadi-Yazdi M., Karimi-Zarchi M., Salehi-Abargouei A., Fallahzadeh H., Nadjarzadeh A. Effects of Dietary Approach to Stop Hypertension diet on androgens, antioxidant status and body composition in overweight and obese women with polycystic ovary syndrome: A randomised controlled trial. J.Hum. Nutr.Diet. 2017;3:275–283. doi: 10.1111/jhn.12433.
    1. Toscani M.K., Mario F.M., Bagatini S.R., Wiltgen D., Matos M.C., Spritzer P.M. Effect of high-protein or normal-protein diet on weight loss, body composition, hormone, and metabolic profile in southern Brazilian women with polycystic ovary syndrome: A randomized study. Gynecol. Endocrinol. 2011;27:925–930. doi: 10.3109/09513590.2011.564686.
    1. Asemi Z., Samimi M., Tabassi Z., Shakeri H., Sabihi S.-S., Esmaillzadeh A. Effects of DASH diet on lipid profiles and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: A randomized clinical trial. Nutrition. 2014;30:1287–1293. doi: 10.1016/j.nut.2014.03.008.
    1. Johnston B.C., Kanters S., Bandayrel K., Wu P., Naji F., Siemieniuk R.A., Ball G.D.C., Busse J., Thorlund K., Guyatt G., et al. Comparison of Weight Loss Among Named Diet Programs in Overweight and Obese Adults. JAMA. 2014;312:923–933. doi: 10.1001/jama.2014.10397.
    1. Gardner C.D., Trepanowski J.F., Del Gobbo L.C., Hauser M.E., Rigdon J., Ioannidis J.P., Desai M., King A.C. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. JAMA. 2018;319:667–679. doi: 10.1001/jama.2018.0245.
    1. Papavasiliou K., Papakonstantinou E. Nutritional support and dietary interventions for women with polycystic ovary syndrome. Nutr. Diet. Suppl. 2017;9:63–85. doi: 10.2147/NDS.S119738.
    1. Asemi Z., Esmaillzadeh A. DASH Diet, Insulin Resistance, and Serum hs-CRP in Polycystic Ovary Syndrome: A Randomized Controlled Clinical Trial. Horm. Metab. Res. 2014;47:232–238. doi: 10.1055/s-0034-1376990.
    1. Lin A.W., Kazemi M., Jarrett B.Y., Brink H.V., Hoeger K.M., Spandorfer S.D., Lujan M.E. Dietary and Physical Activity Behaviors in Women with Polycystic Ovary Syndrome per the New International Evidence-Based Guideline. Nutrients. 2019;11:2711. doi: 10.3390/nu11112711.
    1. Wong J.M.W., Gallagher M., Gooding H., Feldman H.A., Gordon C.M., Ludwig D., Ebbeling C.B. A randomized pilot study of dietary treatments for polycystic ovary syndrome in adolescents. Pediatr. Obes. 2016;11:210–220. doi: 10.1111/ijpo.12047.
    1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25. doi: 10.1016/j.fertnstert.2003.10.004.
    1. Kowalkowska J., Slowinska M.A., Slowinski D., Dlugosz A., Niedzwiedzka E., Wadolowska L. Comparison of a Full Food-Frequency Questionnaire with the Three-Day Unweighted Food Records in Young Polish Adult Women: Implications for Dietary Assessment. Nutrients. 2013;5:2747–2776. doi: 10.3390/nu5072747.
    1. Jarosz M., Rychlik E., Stoś K., Wierzejska R., Wojtasik A., Charzewska J., Mojska H., Szponar L., Sajór I., Kłosiewicz-Latoszek L., et al. Normy Zywienia dla Populacji Polski. Instytut Żywności i Żywienia; Warsaw, Poland: 2017.
    1. Gayoso-Diz P., Otero-González A., Rodriguez-Alvarez M.X., Gude F., García F., De Francisco A., Quintela A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013;13:47. doi: 10.1186/1472-6823-13-47.
    1. Kowalkowska J., Wadolowska L., Czarnocinska J., Czlapka-Matyasik M., Galinski G., Jezewska-Zychowicz M., Bronkowska M., Dlugosz A., Loboda D., Wyka J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients. 2018;10:1845. doi: 10.3390/nu10121845.
    1. Faghfoori Z., Fazelian S., Shadnoush M., Goodarzi R. Nutritional management in women with polycystic ovary syndrome: A review study. Diabetes Metab. Syndr. Clin. Res. Rev. 2017;11:S429–S432. doi: 10.1016/j.dsx.2017.03.030.
    1. Parker D.R., Weiss S.T., Troisi R., Cassano P.A., Vokonas P.S., Landsberg L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: The Normative Aging Study. Am. J. Clin. Nutr. 1993;58:129–136. doi: 10.1093/ajcn/58.2.129.
    1. Stender S., Dyerberg J. Influence of Trans Fatty Acids on Health. Ann. Nutr. Metab. 2004;48:61–66. doi: 10.1159/000075591.
    1. Luo J., Rizkalla S.W., Boillot J., Alamowitch C., Chaib H., Bruzzo F., Desplanque N., Dalix A.M., Durand G., Slama G. Dietary (n-3) polyunsaturated fatty acids improve adipocyte insulin action and glucose metabolism in insu-lin-resistant rats: Relation to membrane fatty acids. J. Nutr. 1996;126:1951–1958. doi: 10.1093/jn/126.8.1951.
    1. Sierra P., Ling P.R., Istfan N.W., Bistrian B.R. Fish oil feeding improves muscle glucose uptake in tumor necrosis factor-treated rats. Metabolism. 1995;44:1365–1370. doi: 10.1016/0026-0495(95)90044-6.
    1. Storlien L.H., Higgins J.A., Thomas T.C., Brown M.A., Wang H.Q., Huang X.-F., Else P. Diet composition and insulin action in animal models. Br. J. Nutr. 2000;83:S85–S90. doi: 10.1017/S0007114500001008.
    1. Zivkovic A.M., German J.B., Sanyal A.J. Comparative review of diets for the metabolic syndrome: Implications for nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 2007;86:285–300. doi: 10.1093/ajcn/86.2.285.
    1. Kasim-Karakas S.E., Almario R.U., Gregory L., Wong R., Todd H., Lasley B.L. Metabolic and Endocrine Effects of a Polyunsaturated Fatty Acid-Rich Diet in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2004;89:615–620. doi: 10.1210/jc.2003-030666.
    1. Madigan C., Ryan M., Owens D., Collins P., Tomkin G.H. Dietary unsaturated fatty acids in type 2 diabetes: Higher levels of postprandial lipoprotein on a linoleic acid-rich sunflower oil diet compared with an oleic acid-rich olive oil diet. Diabetes Care. 2000;23:1472–1477. doi: 10.2337/diacare.23.10.1472.
    1. Mizgier M., Jarzabek-Bielecka G., Mruczyk K. Maternal diet and gestational diabetes mellitus development. J. Matern. Neonatal Med. 2021;34:77–86. doi: 10.1080/14767058.2019.1598364.
    1. Mizgier M., Jarząbek-Bielecka G. Diabetes and sexual dysfunctions during menopause and andropause. Arch. Perinat. Med. 2014;20:35–39.
    1. Ryan M., McInerney D., Owens D., Collins P., Johnson A., Tomkin G. Diabetes and the Mediterranean diet: A beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM: Int. J. Med. 2000;93:85–91. doi: 10.1093/qjmed/93.2.85.
    1. Gołąbek K.D., Regulska-Ilow B. Dietary support in insulin resistance: An overview of current scientific reports. Adv. Clin. Exp. Med. 2019;28:1577–1585. doi: 10.17219/acem/109976.
    1. Mirabelli M., Chiefari E., Arcidiacono B., Corigliano D.M., Brunetti F.S., Maggisano V., Russo D., Foti D.P., Brunetti A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients. 2020;12:1066. doi: 10.3390/nu12041066.
    1. Ginter E., Simko V. Plant polyphenols in prevention of heart disease. Bratisl Lek List. 2012;113:476–480. doi: 10.4149/BLL_2012_105.
    1. Mirabelli M., Russo D., Brunetti A. The Role of Diet on Insulin Sensitivity. Nutrients. 2020;12:3042. doi: 10.3390/nu12103042.
    1. Björck I., Elmståhl H.L. The glycaemic index: Importance of dietary fibre and other food properties. Proc. Nutr. Soc. 2003;62:201–206. doi: 10.1079/PNS2002239.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture . 2015–2020 Dietary Guidelines for Americans. 8th ed. Volume 8. U.S. Department of Health and Human Services and U.S. Department of Agriculture; Wasington, DC, USA: 2015. [(accessed on 10 June 2021)]. Available online: .
    1. Kazemi M., Pierson R.A., Lujan M.E., Chilibeck P.D., McBreairty L.E., Gordon J.J., Serrao S.B., Zello G.A., Chizen D.R. Comprehensive Evaluation of Type 2 Diabetes and Cardiovascular Disease Risk Profiles in Reproductive-Age Women with Polycystic Ovary Syndrome: A Large Canadian Cohort. J. Obstet. Gynaecol. Can. 2019;41:1453–1460. doi: 10.1016/j.jogc.2018.11.026.
    1. BioCycle Study Group. Gaskins A.J., Mumford S.L., Zhang C., Wactawski-Wende J., Hovey K.M., Whitcomb B.W., Howards P.P., Perkins N.J., Yeung E., et al. Effect of daily fiber intake on reproductive function: The BioCycle Study. Am. J. Clin. Nutr. 2009;90:1061–1069. doi: 10.3945/ajcn.2009.27990.
    1. Eken M.K., Ersoy G.S., Abide C.Y., Sanverdi I., Devranoglu B., Kutlu T., Cevik O. Association between circulating neuregulin 4 levels and metabolic, aterogenic, and AMH profile of polycystic ovary syndrome. J. Obstet. Gynaecol. 2019;39:975–980. doi: 10.1080/01443615.2019.1581754.
    1. Khayyatzadeh S.S., Kazemi-Bajestani S.M.R., Bagherniya M., Mehramiz M., Tayefi M., Ebrahimi M., Ferns G.A., Safarian M., Ghayour-Mobarhan M. Serum high C reactive protein concentrations are related to the intake of dietary macronutrients and fiber: Findings from a large representative Persian population sample. Clin. Biochem. 2017;50:750–755. doi: 10.1016/j.clinbiochem.2017.03.016.
    1. Buyken A.E., Goletzke J., Joslowski G., Felbick A., Cheng G., Herder C., Brand-Miller J.C. Association between carbohydrate quality and inflammatory markers: Systematic review of observational and interventional studies. Am. J. Clin. Nutr. 2014;99:813–833. doi: 10.3945/ajcn.113.074252.
    1. Szczuko M., Zapalowska-Chwyć M., Drozd R. A Low Glycemic Index Decreases Inflammation by Increasing the Concentration of Uric Acid and the Activity of Glutathione Peroxidase (GPx3) in Patients with Polycystic Ovary Syndrome (PCOS) Mol. 2019;24:1508. doi: 10.3390/molecules24081508.
    1. Barrea L., Marzullo P., Muscogiuri G., Di Somma C., Scacchi M., Orio F., Aimaretti G., Colao A., Savastano S. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr. Res. Rev. 2018;31:291–301. doi: 10.1017/S0954422418000136.
    1. Marzouk T.M., Ahmed W.A.S. Effect of Dietary Weight Loss on Menstrual Regularity in Obese Young Adult Women with Polycystic Ovary Syndrome. J. Pediatr. Adolesc. Gynecol. 2015;28:457–461. doi: 10.1016/j.jpag.2015.01.002.
    1. Moran L.J., Noakes M., Clifton P.M., Tomlinson L., Norman R. Dietary Composition in Restoring Reproductive and Metabolic Physiology in Overweight Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2003;88:812–819. doi: 10.1210/jc.2002-020815.
    1. Moran L.J., Noakes M., Clifton P., Wittert G.A., Williams G., Norman R. Short-term meal replacements followed by dietary macronutrient restriction enhance weight loss in polycystic ovary syndrome. Am. J. Clin. Nutr. 2006;84:77–87. doi: 10.1093/ajcn/84.1.77.
    1. Soares N.P., Dos Santos A.C.S., Costa E.C., Azevedo G.D., Damasceno D.C., Fayh A.P.T., Lemos T. Diet-Induced Weight Loss Reduces DNA Damage and Cardiometabolic Risk Factors in Overweight/Obese Women with Polycystic Ovary Syndrome. Ann. Nutr. Metab. 2016;68:220–227. doi: 10.1159/000444130.
    1. Marsh K.A., Steinbeck K.S., Atkinson F., Petocz P., Brand-Miller J. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am. J. Clin. Nutr. 2010;92:83–92. doi: 10.3945/ajcn.2010.29261.
    1. Mehrabani H.H., Salehpour S., Amiri Z., JalaliFarahani S., Meyer B.J., Tahbaz F. Beneficial Effects of a High-Protein, Low-Glycemic-Load Hypocaloric Diet in Overweight and Obese Women with Polycystic Ovary Syndrome: A Randomized Controlled Intervention Study. J. Am. Coll. Nutr. 2012;31:117–125. doi: 10.1080/07315724.2012.10720017.
    1. Barr S., Reeves S., Sharp K., Jeanes Y. An Isocaloric Low Glycemic Index Diet Improves Insulin Sensitivity in Women with Polycystic Ovary Syndrome. J. Acad. Nutr. Diet. 2013;113:1523–1531. doi: 10.1016/j.jand.2013.06.347.
    1. Harrison C.L., Lombard C., Moran L., Teede H.J. Exercise therapy in polycystic ovary syndrome: A systematic review. Hum. Reprod. Update. 2010;17:171–183. doi: 10.1093/humupd/dmq045.
    1. Almenning I., Rieber-Mohn A., Lundgren K.M., Løvvik T.S., Garnæs K.K., Moholdt T. Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study. PLoS ONE. 2015;10:e0138793. doi: 10.1371/journal.pone.0138793.
    1. Khashchenko E.P., Sukhanova S.A., Pyataeva S.V., Volodina M.A., Tarasova N.V., Tsvirkun D.V., Uvarova E.V., Vysokikh M.Y. Indicators of mitochondrial functioning in adolescent girls with polycystic ovary syndrome with regard to the presence of metabolic disorders and overweight. Akusherstvo Ginekol. 2017 doi: 10.18565/aig.2017.7.104-13.
    1. Thompson F.E., Kirkpatrick S.I., Subar A.F., Reedy J., Schap T.E., Wilson M.M., Krebs-Smith S.M. The National Cancer Institute’s Dietary Assessment Primer: A Resource for Diet Research. J. Acad. Nutr. Diet. 2015;115:1986–1995. doi: 10.1016/j.jand.2015.08.016.
    1. McCarney R., Warner J., Iliffe S., Van Haselen R., Griffin M., Fisher P. The Hawthorne Effect: A randomised, controlled trial. BMC Med. Res. Methodol. 2007;7:30. doi: 10.1186/1471-2288-7-30.
    1. Kanaya N., Vonderfecht S., Chen S. Androgen (dihydrotestosterone)-mediated regulation of food intake and obesity in female mice. J. Steroid Biochem. Mol. Biol. 2013;138:100–106. doi: 10.1016/j.jsbmb.2013.04.001.

Source: PubMed

3
Se inscrever