Liraglutide to Improve corONary haemodynamics during Exercise streSS (LIONESS): a double-blind randomised placebo-controlled crossover trial

Aung Myat, Simon R Redwood, Satpal Arri, Bernard J Gersh, Deepak L Bhatt, Michael S Marber, Aung Myat, Simon R Redwood, Satpal Arri, Bernard J Gersh, Deepak L Bhatt, Michael S Marber

Abstract

Background: Glucagon-like peptide-1 receptor (GLP-1R) activation may improve myocardial performance in the context of ischaemia, independent of glycaemic control, in individuals with and without type 2 diabetes mellitus.

Methods: The LIONESS trial was a single-centre randomised double-blind placebo-controlled crossover study to determine whether prolonged GLP-1R activation could improve exercise haemodynamics in chronic stable angina patients. Eligibility criteria comprised angiographic evidence of obstructive coronary artery disease (CAD) and an abnormal baseline exercise tolerance test (ETT) demonstrating > 0.1 mV of planar or downsloping ST-segment depression (STD). Those randomised to active agent started with a 1-week run-in phase of 0.6 mg liraglutide daily, an established injectable GLP-1R agonist, followed by 1 week of 1.2 mg liraglutide, after which patients performed a week 2 ETT. Patients then self-administered 1.8 mg liraglutide for a week before completing a week 3 ETT. The placebo arm received visually and temporally matched daily saline injections. Participants then crossed over to a 3-week course of saline injections interspersed with a week 5 ETT and week 6 ETT and vice versa. Co-primary endpoints were rate pressure product (RPP) at 0.1 mV STD and magnitude of STD at peak exercise.

Results: Twenty-two patients (21 without diabetes) were randomised. There was no significant difference between saline versus liraglutide in the co-primary endpoints of RPP achieved at 0.1 mV STD (saline vs. liraglutide 1.2 mg p = 0.097; saline vs. liraglutide 1.8 mg p = 0.48) or the degree of STD at peak exercise (saline vs. liraglutide 1.2 mg p = 0.68; saline vs. liraglutide 1.8 mg p = 0.57). Liraglutide did not cause symptomatic hypoglycaemia, renal dysfunction, acute pancreatitis or provoke early withdrawal from the trial. Liraglutide significantly reduced weight (baseline 88.75 ± 16.5 kg vs. after liraglutide 87.78 ± 16.9 kg; p = 0.0008) and improved the lipid profile (mean total cholesterol: at baseline 3.97 ± 0.88 vs. after liraglutide 3.56 ± 0.71 mmol/L; p < 0.0001).

Conclusion: Liraglutide did not enhance exercise tolerance or haemodynamics compared with saline placebo during serial treadmill testing in patients with established obstructive CAD. It did, however, significantly reduce weight and improve the lipid profile. Trial Registration ClinicalTrials.gov Identifier NCT02315001. Retrospectively registered on 11th December 2014.

Keywords: Chronic stable angina; Coronary artery disease; Glucagon-like peptide-1 receptor agonist; Incretin; Liraglutide; Myocardial ischaemia.

Conflict of interest statement

AM, SA, BJG, SRR and MSM declare that they have no competing interests.

DLB discloses the following relationships—Advisory Board: Cardax, CellProthera, Cereno Scientific, Elsevier Practice Update Cardiology, Level Ex, Medscape Cardiology, MyoKardia, PhaseBio, PLx Pharma, Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, TobeSoft; Chair: American Heart Association Quality Oversight Committee; Data Monitoring Committees: Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Cleveland Clinic (including for the ExCEED trial, funded by Edwards), Contego Medical (Chair, PERFORMANCE 2), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo), Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Vice-Chair, ACC Accreditation Committee), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute; RE-DUAL PCI clinical trial steering committee funded by Boehringer Ingelheim; AEGIS-II executive committee funded by CSL Behring), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Canadian Medical and Surgical Knowledge Translation Research Group (clinical trial steering committees), Duke Clinical Research Institute (clinical trial steering committees, including for the PRONOUNCE trial, funded by Ferring Pharmaceuticals), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), K2P (Co-Chair, interdisciplinary curriculum), Level Ex, Medtelligence/ReachMD (CME steering committees), MJH Life Sciences, Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today’s Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research Funding: Abbott, Afimmune, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Cardax, Chiesi, CSL Behring, Eisai, Ethicon, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Idorsia, Ironwood, Ischemix, Lexicon, Lilly, Medtronic, MyoKardia, Pfizer, PhaseBio, PLx Pharma, Regeneron, Roche, Sanofi, Synaptic, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald’s Heart Disease); Site Co-Investigator: Biotronik, Boston Scientific, CSI, St. Jude Medical (now Abbott), Svelte; Trustee: American College of Cardiology; Unfunded Research: FlowCo, Merck, Novo Nordisk, Takeda.

Figures

Fig. 1
Fig. 1
The LIONESS trial CONSORT diagram
Fig. 2
Fig. 2
Mean percentage of target heart rate achieved across sequential exercise testing
Fig. 3
Fig. 3
Primary endpoints. a Rate pressure product at 0.1 mV ST-segment depression ETT-1 placebo vs. ETT-3 1.2 mg liraglutide. b Rate pressure product at 0.1 mV ST-segment depression ETT-2 placebo vs. ETT-4 1.8 mg liraglutide. c ST-segment depression at peak exercise ETT-1 placebo vs. ETT-3 1.2 mg liraglutide. d ST-segment depression at peak exercise ETT-2 placebo vs. ETT-4 1.8 mg liraglutide
Fig. 4
Fig. 4
Secondary inducible ischaemia endpoints. a Time to 0.1 mV ST-segment depression ETT-1 placebo vs. ETT-3 1.2 mg liraglutide. b Time to 0.1 mV ST-segment depression ETT-2 placebo vs. ETT-4 1.8 mg liraglutide. c Time to maximum ST-segment depression ETT-1 placebo vs. ETT-3 1.2 mg liraglutide. d Time to maximum ST-segment depression ETT-2 placebo vs. ETT-4 1.8 mg liraglutide
Fig. 5
Fig. 5
Secondary exercise capacity endpoints. a Total exercise time ETT-1 placebo vs. ETT-3 1.2 mg liraglutide. b Total exercise time ETT-2 placebo vs. ETT-4 1.8 mg liraglutide. c Recovery time to 0.05 mV ST-segment depression ETT-1 placebo vs. ETT-3 1.2 mg liraglutide. d Recovery time to 0.05 mV ST-segment depression ETT-2 placebo vs. ETT-4 1.8 mg liraglutide
Fig. 6
Fig. 6
Changes in lipid profile constituents. a Mean total cholesterol. b Mean low density lipoprotein cholesterol (LDL-C). c Mean high density lipoprotein cholesterol (HDL-C)

References

    1. Sarwar N, Gao P, Seshasai SRK, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9.
    1. The Action to Control Cardiovascular Rise in Diabetes Study Group, Group TA to CCR in DS. Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med. 2008;358:2545–59.
    1. The ADVANCE Collaborative Group, Chalmers J, MacMahon S, Patel A, Cooper M. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.
    1. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–139. doi: 10.1056/NEJMoa0808431.
    1. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year Follow-Up of Intensive Glucose Control in Type 2 Diabetes. N Engl J Med. 2008;359:1577–1589. doi: 10.1056/NEJMoa0806470.
    1. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA. 2010;304:411–418. doi: 10.1001/jama.2010.920.
    1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373:232–242. doi: 10.1056/NEJMoa1501352.
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–1326. doi: 10.1056/NEJMoa1307684.
    1. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373:2247–2257. doi: 10.1056/NEJMoa1509225.
    1. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–1844. doi: 10.1056/NEJMoa1607141.
    1. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–1335. doi: 10.1056/NEJMoa1305889.
    1. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375:311–322. doi: 10.1056/NEJMoa1603827.
    1. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377:1228–1239. doi: 10.1056/NEJMoa1612917.
    1. Hernandez AF, Green JB, Janmohamed S, D’Agostino RB, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392:1519–1529. doi: 10.1016/S0140-6736(18)32261-X.
    1. Zinman B, Wanner C, Lachin JM, Fitchett DH, Bluhmki E, Hantel S, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. N Engl J Med. 2015;373:311–322. doi: 10.1056/NEJMoa1504720.
    1. Noyan-Ashraf M, Momen M, Ban K, Al-Muktafi S, Zhou Y, Riazi A, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58:975–983. doi: 10.2337/db08-1193.
    1. Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33:1491–1519. doi: 10.1093/eurheartj/ehr309.
    1. Lønborg J, Kelbæk H, Vejlstrup N, Bøtker HE, Kim WY, Holmvang L, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv. 2012;5:288–295. doi: 10.1161/CIRCINTERVENTIONS.112.968388.
    1. Myat A, Arri S, Bhatt DL, Gersh BJ, Redwood SR, Marber MS. Design and rationale for the randomised, double-blinded, placebo-controlled Liraglutide to Improve corONary haemodynamics during Exercise streSS (LIONESS) crossover study. Cardiovasc Diabetol. 2015;14:27. doi: 10.1186/s12933-015-0193-4.
    1. Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57:549–556. doi: 10.1161/01.CIR.57.3.549.
    1. Edwards RJ, Redwood SR, Lambiase PD, Tomset E, Rakhit RD, Marber MS. Antiarrhythmic and anti-ischaemic effects of angina in patients with and without coronary collaterals. Heart. 2002;88:604–610. doi: 10.1136/heart.88.6.604.
    1. Edwards RJ, Redwood SR, Lambiase PD, Marber MS. The effect of an angiotensin-converting enzyme inhibitor and a K+(ATP) channel opener on warm up angina. Eur Heart J. 2005;26:598–606. doi: 10.1093/eurheartj/ehi082.
    1. Williams RP, Manou-Stathopoulou V, Redwood SR, Marber MS. “Warm-up Angina”: harnessing the benefits of exercise and myocardial ischaemia. Heart. 2014;100:106–114. doi: 10.1136/heartjnl-2013-304187.
    1. Saha M, Redwood SR, Marber MS. Exercise training with ischaemia: is warming up the key? Eur Heart J. 2007;28:1543–1544. doi: 10.1093/eurheartj/ehm187.
    1. Wellek S, Blettner M. Vom richtigen Umgang mit dem Crossover-Design in klinischen Studien: Teil 18 der Serie zur Bewertung wissenschaftlicher Publikationen. Dtsch Arztebl Int. 2012;109:276–281.
    1. Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, et al. Hypoglycemia and Diabetes: A Report of a Workgroup of the American Diabetes Association and The Endocrine Society. Diabetes Care. 2013;36:1384–1395. doi: 10.2337/dc12-2480.
    1. Astrup A, Rössner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374:1606–1616. doi: 10.1016/S0140-6736(09)61375-1.
    1. Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372(9645):1240–1250. doi: 10.1016/S0140-6736(08)61206-4.
    1. Horton E, Silberman C, Davis K. Changes in Cardiovascular biomarkers in patients with type 2 diabetes receiving incretin therapies or insulin in a large cohort database. Diabetes Care. 2010;33:1759–1765. doi: 10.2337/dc09-2062.
    1. Marre M, Shaw J, Brändle M, Bebakar WMW, Kamaruddin N a, Strand J, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med. 2009;26:268–78.
    1. Zinman B, Gerich J, Buse J, Lewin A, Schwartz S, Raskin P. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD) Diabetes Care. 2009;32:1224–1230. doi: 10.2337/dc08-2124.
    1. Russell-Jones D, Vaag A, Schmitz O, Sethi BK, Lalic N, Antic S, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia. 2009;52:2046–2055. doi: 10.1007/s00125-009-1472-y.
    1. Sivertsen J, Rosenmeier J, Holst JJ, Vilsbøll T. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol. 2012;9:209–222. doi: 10.1038/nrcardio.2011.211.
    1. Buse JB, Nauck M, Forst T, Sheu WH, Shenouda SK, Heilmann CR, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet. 2013;381:117–24.
    1. Rosenstock J, Klaff L, Schwartz S. Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes. 2010;33:6–8.
    1. Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hänselmann A, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19:69–77. doi: 10.1002/ejhf.657.
    1. Kumarathurai P, Anholm C, Larsen BS, Olsen RH, Madsbad S, Kristiansen O, et al. Effects of liraglutide on heart rate and heart rate variability: A randomized, double-blind, placebo-controlled crossover study. Diabetes Care. 2017;40:117–124. doi: 10.2337/dc16-1580.
    1. Lorenz M, Lawson F, Owens D, Raccah D, Roy-Duval C, Lehmann A, et al. Differential effects of glucagon-like peptide-1 receptor agonists on heart rate. Cardiovasc Diabetol. 2017;16:1–10. doi: 10.1186/s12933-016-0490-6.
    1. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–1705. doi: 10.1016/S0140-6736(06)69705-5.
    1. Nauck MA, Meier JJ, Cavender MA, El Aziz MA, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation. 2017;136:849–870. doi: 10.1161/CIRCULATIONAHA.117.028136.
    1. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med. 2015;373:11–22.
    1. von Scholten BJ, Lajer M, Goetze JP, Persson F, Rossing P. Time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet Med. 2015;32:343–352. doi: 10.1111/dme.12594.
    1. Verma S, Bhatt DL, Bain SC, Buse JB, Mann JFE, Marso SP, et al. Effect of liraglutide on cardiovascular events in patients with type 2 diabetes mellitus and polyvascular disease results of the LEADER trial. Circulation. 2018;137:2179–2183. doi: 10.1161/CIRCULATIONAHA.118.033898.
    1. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7:776–785. doi: 10.1016/S2213-8587(19)30249-9.
    1. Chen WR, Hu SY, Chen YD, Zhang Y, Qian G, Wang J, et al. Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J. 2015;170:845–854. doi: 10.1016/j.ahj.2015.07.014.
    1. Chen WR, Shen XQ, Zhang Y, Chen YD, Hu SY, Qian G, et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine. 2016;52:516–526. doi: 10.1007/s12020-015-0798-0.
    1. Chen WR, Chen YD, Tian F, Yang N, Cheng LQ, Hu SY, et al. Effects of liraglutide on reperfusion injury in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging. 2016;9:1–9. doi: 10.1161/CIRCIMAGING.116.005146.

Source: PubMed

3
Se inscrever