Liver fat scores do not reflect interventional changes in liver fat content induced by high-protein diets

Stefan Kabisch, Mariya Markova, Silke Hornemann, Stephanie Sucher, Olga Pivovarova-Ramich, Jürgen Machann, Johannes Hierholzer, Sascha Rohn, Andreas F H Pfeiffer, Stefan Kabisch, Mariya Markova, Silke Hornemann, Stephanie Sucher, Olga Pivovarova-Ramich, Jürgen Machann, Johannes Hierholzer, Sascha Rohn, Andreas F H Pfeiffer

Abstract

Non-alcoholic fatty liver disease (NAFLD) is common in Metabolic Syndrome and type 2 diabetes (T2DM), driven by energy imbalance, saturated fats and simple carbohydrates. NAFLD requires screening and monitoring for late complications. Liver fat indices may predict NAFLD avoiding expensive or invasive gold-standard methods, but they are poorly validated for use in interventional settings. Recent data indicate a particular insensitivity to weight-independent liver fat reduction. We evaluated 31 T2DM patients, completing a randomized intervention study on isocaloric high-protein diets. We assessed anthropometric measures, intrahepatic lipid (IHL) content and serum liver enzymes, allowing AUROC calculations as well as cross-sectional and longitudinal Spearman correlations between the fatty liver index, the NAFLD-liver fat score, the Hepatosteatosis Index, and IHL. At baseline, all indices predicted NAFLD with moderate accuracy (AUROC 0.731-0.770), supported by correlation analyses. Diet-induced IHL changes weakly correlated with changes of waist circumference, but no other index component or the indices themselves. Liver fat indices may help to easily detect NAFLD, allowing cost-effective allocation of further diagnostics to patients at high risk. IHL reduction by weight-independent diets is not reflected by a proportional change in liver fat scores. Further research on the development of treatment-sensitive indices is required.Trial registration: The trial was registered at clinicaltrials.gov: NCT02402985.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
AUROC representation of NAFLD prediction by FLI (a), NAFLD-LFS (b) and HSI (c); the analyses show AUROC values of 0.731 (FLI), 0.752 (NAFLD-LFS) and 0.770 (HSI).
Figure 2
Figure 2
Correlation analysis between liver fat indices and IHL at baseline; FLI = fatty liver index, HSI = Hepatosteatosis Index, IHL = intrahepatic lipids, NAFLD-LFS = non-alcoholic fatty liver disease-liver fat score; (a) IHL ~ FLI; rho = 0.351. p = 0.049; (b) IHL ~ NAFLD-LFS; rho = 0.537, p = 0.002; (c) IHL ~ HSI; rho = 0.393, p = 0.032.
Figure 3
Figure 3
Correlation analysis with changes of liver fat indices and IHL; FLI = fatty liver index, HSI = Hepatosteatosis Index, IHL = intrahepatic lipids, NAFLD-LFS = non-alcoholic fatty liver disease-liver fat score; (a) IHL ~ FLI; rho = 0.342. p = 0.069; (b) IHL ~ NAFLD-LFS; rho =  − 0,058, p = 0.765; (c) IHL ~ HSI; rho =  − 0.049, p = 0.800.

References

    1. Tomah S, Alkhouri N, Hamdy O. Nonalcoholic fatty liver disease and type 2 diabetes: where do Diabetologists stand? Clin. Diabetes Endocrinol. 2020;6:9. doi: 10.1186/s40842-020-00097-1.
    1. Ruissen MM, Mak AL, Beuers U, Tushuizen ME, Holleboom AG. Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease. Eur J Endocrinol. 2020;183:R57–R73. doi: 10.1530/EJE-20-0065.
    1. Grazia P, Ciro C, Antonia G, Federica S, Salvatore P. The relevance of noninvasive tools to assess fibrosis in non-alcoholic fatty liver disease. Curr. Pharm. Des. 2020;26:3928–3938. doi: 10.2174/1381612826666200521133307.
    1. Ferraioli G, Soares Monteiro LB. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019;25(40):6053–6062. doi: 10.3748/wjg.v25.i40.6053.
    1. Ballestri S, Nascimbeni F, Lugari S, Lonardo A, Francica G. A critical appraisal of the use of ultrasound in hepatic steatosis. Expert Rev. Gastroenterol. Hepatol. 2019;13(7):667–681. doi: 10.1080/17474124.2019.1621164.
    1. Pu K, Wang Y, Bai S, et al. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and meta-analysis. BMC Gastroenterol. 2019;19(1):51. doi: 10.1186/s12876-019-0961-9.
    1. Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J. Hepatol. 2009;51(3):433–445. doi: 10.1016/j.jhep.2009.05.023.
    1. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, Tiribelli C. The Fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33. doi: 10.1186/1471-230X-6-33.
    1. Motamed N, Sohrabi M, Ajdarkosh H, Hemmasi G, Maadi M, Sayeedian FS, Pirzad R, Abedi K, Aghapour S, Fallahnezhad M, Zamani F. Fatty liver index vs waist circumference for predicting non-alcoholic fatty liver disease. World J. Gastroenterol. 2016;22(10):3023–3030. doi: 10.3748/wjg.v22.i10.3023.
    1. Grotti Clemente AP, Molin Netto BD, Ganen AP, et al. Cut-off values of visceral adiposity to predict NAFLD in Brazilian obese adolescents. J. Nutr. Metabol. 2013;2013:724781. doi: 10.1155/2013/724781.
    1. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, Lundbom N, Rissanen A, Ridderstråle M, Groop L, Orho-Melander M, Yki-Järvinen H. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865–872. doi: 10.1053/j.gastro.2009.06.005.
    1. Kantartzis K, Rettig I, Staiger H, Machann J, Schick F, Scheja L, Gastaldelli A, Bugianesi E, Peter A, Schulze MB, Fritsche A, Häring HU, Stefan N. An extended fatty liver index to predict non-alcoholic fatty liver disease. Diabetes Metab. 2017;43(3):229–239. doi: 10.1016/j.diabet.2016.11.006.
    1. Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, Kim YJ, Yoon JH, Cho SH, Sung MW, Lee HS. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010;42(7):503–508. doi: 10.1016/j.dld.2009.08.002.
    1. Xia MF, Yki-Järvinen H, Bian H, Lin HD, Yan HM, Chang XX, Zhou Y, Gao X. Influence of ethnicity on the accuracy of non-invasive scores predicting non-alcoholic fatty liver disease. PLoS ONE. 2016;11(8):e0160526. doi: 10.1371/journal.pone.0160526.
    1. Wang J, Xu C, Xun Y, Lu Z, Shi J, Yu C, Li Y. ZJU index: a novel model for predicting nonalcoholic fatty liver disease in a Chinese population. Sci Rep. 2015;5:16494. doi: 10.1038/srep16494.
    1. Bhatt SP, Misra A, Nigam P, Guleria R, Pasha MA. Phenotype body composition and prediction equations (Indian Fatty liver index) for non-alcoholic fatty liver disease in non-diabetic asian indians: a case-control study. PLoS ONE. 2015;10(11):e0142260. doi: 10.1371/journal.pone.0142260.
    1. Birjandi M, Ayatollahi SM, Pourahmad S, Safarpour AR. Prediction and diagnosis of non-alcoholic fatty liver disease (NAFLD) and identification of its associated factors using the classification tree method. Iran Red Crescent Med. J. 2016;18(11):e32858. doi: 10.5812/ircmj.32858.
    1. Unalp-Arida A, Ruhl CE. Liver fat scores predict liver disease mortality in the United States population. Aliment Pharmacol. Ther. 2018;48(9):1003–1016. doi: 10.1111/apt.14967.
    1. Kahl S, Straßburger K, Nowotny B, Livingstone R, Klüppelholz B, Keßel K, Hwang JH, Giani G, Hoffmann B, Pacini G, Gastaldelli A, Roden M. Comparison of liver fat indices for the diagnosis of hepatic steatosis and insulin resistance. PLoS ONE. 2014;9(4):e94059. doi: 10.1371/journal.pone.0094059.
    1. Fedchuk L, Nascimbeni F, Pais R, Charlotte F, Housset C, Ratziu V. LIDO Study Group. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol. Ther. 2014;40(10):1209–1222. doi: 10.1111/apt.12963.
    1. Zhang HX, Xu XQ, Fu JF, Lai C, Chen XF. Predicting hepatic steatosis and liver fat content in obese children based on biochemical parameters and anthropometry. Pediatr. Obes. 2015;10(2):112–117. doi: 10.1111/ijpo.232.
    1. Koot BG, van der Baan-Slootweg OH, Bohte AE, Nederveen AJ, van Werven JR, Tamminga-Smeulders CL, Merkus MP, Schaap FG, Jansen PL, Stoker J, Benninga MA. Accuracy of prediction scores and novel biomarkers for predicting nonalcoholic fatty liver disease in obese children. Obesity (Silver Spring) 2013;21(3):583–590. doi: 10.1002/oby.20173.
    1. Cantero I, Elorz M, Abete I, et al. Ultrasound/elastography techniques, lipidomic and blood markers compared to magnetic Resonance Imaging in non-alcoholic fatty liver disease adults. Int. J. Med. Sci. 2019;16(1):75–83. doi: 10.7150/ijms.28044.
    1. Orešič M, Hyötyläinen T, Kotronen A, Gopalacharyulu P, Nygren H, Arola J, Castillo S, Mattila I, Hakkarainen A, Borra RJ, Honka MJ, Verrijken A, Francque S, Iozzo P, Leivonen M, Jaser N, Juuti A, Sørensen TI, Nuutila P, van Gaal L, Yki-Järvinen H. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia. 2013;56(10):2266–2274. doi: 10.1007/s00125-013-2981-2.
    1. Guiu B, Crevisy-Girod E, Binquet C, Duvillard L, Masson D, Lepage C, Hamza S, Krausé D, Verges B, Minello A, Cercueil JP, Hillon P, Petit JM. Prediction for steatosis in type-2 diabetes: clinico-biological markers versus 1H-MR spectroscopy. Eur. Radiol. 2012;22(4):855–863. doi: 10.1007/s00330-011-2326-9.
    1. Amirkalali B, Poustchi H, Keyvani H, Khansari MR, Ajdarkosh H, Maadi M, Sohrabi MR, Zamani F. Prevalence of non-alcoholic fatty liver disease and its predictors in North of Iran. Iran J. Public Health. 2014;43(9):1275–1283.
    1. Kim G, Lee Y, Park YM, et al. Use of a diabetes self-assessment score to predict nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Medicine. 2015;94(27):e1103. doi: 10.1097/MD.0000000000001103.
    1. Keating SE, Parker HM, Hickman IJ, Gomersall SR, Wallen MP, Coombes JS, Macdonald GA, George J, Johnson NA. NAFLD in clinical practice: Can simple blood and anthropometric markers be used to detect change in liver fat measured by 1H-MRS? Liver Int. 2017;37(12):1907–1915. doi: 10.1111/liv.13488.
    1. Kabisch S, Bäther S, Dambeck U, Kemper M, Gerbracht C, Honsek C, Sachno A, Pfeiffer AFH. Liver fat scores moderately reflect interventional changes in liver fat content by a low-fat diet but not by a low-carb diet. Nutrients. 2018;10(2):E157. doi: 10.3390/nu10020157.
    1. Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, Berglund J, Pulkki K, Basu S, Uusitupa M, Rudling M, Arner P, Cederholm T, Ahlström H, Risérus U. Effects of n-6 PUFAs compared with SFAs on liver fat lipoproteins and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 2012;95(5):1003–1012. doi: 10.3945/ajcn.111.030114.
    1. Markova M, Pivovarova O, Hornemann S, Sucher S, Frahnow T, Wegner K, Machann J, Petzke KJ, Hierholzer J, Lichtinghagen R, Herder C, Carstensen-Kirberg M, Roden M, Rudovich N, Klaus S, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AF. Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes. Gastroenterology. 2017;152(3):571–585.e8. doi: 10.1053/j.gastro.2016.10.007.
    1. Sucher S, Markova M, Hornemann S, Pivovarova O, Rudovich N, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH. Comparison of the effects of diets high in animal or plant protein on metabolic and cardiovascular markers in type 2 diabetes: a randomized clinical trial. Diabetes Obes. Metab. 2017;19(7):944–952. doi: 10.1111/dom.12901.
    1. Machann J, Thamer C, Schnoedt B, Stefan N, Haring HU, Claussen CD, Fritsche A, Schick F. Hepatic lipid accumulation in healthy subjects: a comparative study using spectral fat-selective MRI and volume-localized 1H-MR spectroscopy. Magn. Reson. Med. 2006;55(4):913–917. doi: 10.1002/mrm.20825.
    1. Kahl S, Straßburger K, Nowotny B, et al. Comparison of liver fat indices for the diagnosis of hepatic steatosis and insulin resistance. PLoS ONE. 2014;9(4):e94059. doi: 10.1371/journal.pone.0094059.
    1. Fujii H, Doi H, Ko T, Fukuma T, Kadono T, Asaeda K, Kobayashi R, Nakano T, Doi T, Nakatsugawa Y, Yamada S, Nishimura T, Tomatsuri N, Sato H, Okuyama Y, Kimura H, Kishimoto E, Nakabe N, Shima T. Frequently abnormal serum gamma-glutamyl transferase activity is associated with future development of fatty liver: a retrospective cohort study. BMC Gastroenterol. 2020;20(1):217. doi: 10.1186/s12876-020-01369-x.
    1. Rajput R, Ahlawat P. Prevalence and predictors of non-alcoholic fatty liver disease in prediabetes. Diabetes Metab Syndr. 2019;13(5):2957–2960. doi: 10.1016/j.dsx.2019.07.060.
    1. Unalp-Arida A, Ruhl CE. Noninvasive fatty liver markers predict liver disease mortality in the U.S. population. Hepatology. 2016;63(4):1170–1183. doi: 10.1002/hep.28390.
    1. Zaharia OP, Strassburger K, Strom A, Bönhof GJ, Karusheva Y, Antoniou S, Bódis K, Markgraf DF, Burkart V, Müssig K, Hwang JH, Asplund O, Groop L, Ahlqvist E, Seissler J, Nawroth P, Kopf S, Schmid SM, Stumvoll M, Pfeiffer AFH, Kabisch S, Tselmin S, Häring HU, Ziegler D, Kuss O, Szendroedi J, Roden M. German Diabetes Study Group. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684–694. doi: 10.1016/S2213-8587(19)30187-1.
    1. Yki-Järvinen H. Nutritional modulation of non-alcoholic fatty liver disease and insulin resistance. Nutrients. 2015;7(11):9127–9138. doi: 10.3390/nu7115454.
    1. Jung JY, Shim JJ, Park SK, Ryoo JH, Choi JM, Oh IH, Jung KW, Cho H, Ki M, Won YJ, Oh CM. Serum ferritin level is associated with liver steatosis and fibrosis in Korean general population. Hepatol Int. 2019;13(2):222–233. doi: 10.1007/s12072-018-9892-8.

Source: PubMed

3
Se inscrever