Remote monitoring for heart failure management during COVID-19 pandemic

Enrico Bertagnin, Antonio Greco, Giuseppe Bottaro, Paolo Zappulla, Imma Romanazzi, Maria Daniela Russo, Marco Lo Presti, Noemi Valenti, Giuseppe Sollano, Valeria Calvi, Enrico Bertagnin, Antonio Greco, Giuseppe Bottaro, Paolo Zappulla, Imma Romanazzi, Maria Daniela Russo, Marco Lo Presti, Noemi Valenti, Giuseppe Sollano, Valeria Calvi

Abstract

Background: COVID-19 pandemic impacted on heart failure patients' lifestyle and quality of life, affecting both physical activity levels and state of health.

Methods: Demographic data and device records were extracted for patients with heart failure in the 16 weeks at the turn of lockdown during pandemic. To explore the variability across the lockdown period, a week-to-week analysis was performed. Patients were interviewed to investigate physical activity and psychological insights. The primary endpoint was the variation in physical activity at the turn of lockdown.

Results: At our facility, 2225 patients implanted with a cardiac device were screened and data were collected for 211 patients fulfilling the inclusion criteria. Patients' physical activity significantly decreased in the lockdown period compared with the control period (active time per day 8.0% vs. 10.8%; relative reduction [RRR] 25.9%; p < 0.0001). A small decrease was noted for mean heart rate (70.1 vs. 71.7 beats per minute [bpm]; RRR 2.2%; p < 0.0001), while thoracic impedance slightly increased (82.2 vs. 82.7 ohm; RRR 0.6%; p = 0.001). Patients' physical activity decreased from week 7 to week 11 (10.9% vs. 6.9%; RRR 36.7%; P < 0.0001) with an increase between week 11 and week 16 (6.9% vs. 8.5%; RRR 18.8%; P < 0.0001). Patients' perceptions about physical activity showed a very low correlation with remote monitoring-assessed physical activity levels (r2 = 0.035, p = 0.039).

Conclusions: Telemedicine and remote monitoring can explore the impact of COVID-19 pandemic on vital signs and physical activity levels of heart failure patients, playing a crucial role in the prediction of heart failure worsening during circumstances discouraging outpatient visits.

Keywords: COVID-19; Cardiac Implantable Devices; Heart Failure; Physical Activity; Remote Monitoring; Telemedicine.

Conflict of interest statement

The authors report no relationships that could be construed as a conflict of interest.

© 2021 The Authors.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Study flow-chart. Abbreviation: CIED = Cardiac Implantable Electronic Device.
Fig. 2
Fig. 2
Physical activity and vital signs variations between control and lockdown periods. In the panel A, physical activity levels are reported through study weeks, while panel B shows the differences in mean heart rate, and the panel C refers to variations in thoracic impedance. Blue indicates control period, and red lockdown period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3
Fig. 3
Week-to-week analysis of physical activity levels. Physical activity levels are compared between sample weeks (week 7 for control period, week 11 for the initial lockdown, week 16 for final lockdown). Red arrows indicate relative variations between comparisons. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

References

    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A Novel Coronavirus from patients with pneumonia in China. N. Engl. J. Med. 2019;382(2020):727–733. doi: 10.1056/NEJMoa2001017.
    1. Di Renzo L., Gualtieri P., Pivari F., Soldati L., Attinà A., Cinelli G., Leggeri C., Caparello G., Barrea L., Scerbo F., Esposito E., De Lorenzo A. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J. Transl. Med. 2020;18:229. doi: 10.1186/s12967-020-02399-5.
    1. Lansky A., Shah T., Wijns W., Stefanini G.G., Farb A., Kaplan A., Xu B.o., Pietras C., Velazquez E., Serruys P.W., Mahfoud F., Baumbach A. Immediate and long-term impact of the COVID-19 pandemic on cardiovascular clinical trials: considerations for study conduct and endpoint determination. EuroIntervention. 2020;16(10):787–793. doi: 10.4244/EIJV16I10A147.
    1. Clerkin K.J., Fried J.A., Raikhelkar J., Sayer G., Griffin J.M., Masoumi A., Jain S.S., Burkhoff D., Kumaraiah D., Rabbani LeRoy, Schwartz A., Uriel N. COVID-19 and cardiovascular disease. Circulation. 2020;141(20):1648–1655. doi: 10.1161/CIRCULATIONAHA.120.046941.
    1. Adamo M., Lombardi C.M., Metra M. at a glance: focus on COVID-19, quality of life and comorbidities. Eur. J. Heart Fail. 2020;22(6):917–918. doi: 10.1002/ejhf.v22.610.1002/ejhf.1515.
    1. Lavie C.J., Ozemek C., Carbone S., Katzmarzyk P.T., Blair S.N. Sedentary behavior, exercise, and cardiovascular health. Circ. Res. 2019;124(5):799–815. doi: 10.1161/CIRCRESAHA.118.312669.
    1. Chialà O., Vellone E., Klompstra L., Ortali G.A., Strömberg A., Jaarsma T. Relationships between exercise capacity and anxiety, depression, and cognition in patients with heart failure. Hear. Lung. 2018;47(5):465–470. doi: 10.1016/j.hrtlng.2018.07.010.
    1. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., Jessup M., Linde C., Nihoyannopoulos P., Parissis J.T., Pieske B., Riley J.P., Rosano G.M.C., Ruilope L.M., Ruschitzka F., Rutten F.H., van der Meer P. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016;37(2016):2129–2200. doi: 10.1093/eurheartj/ehw128.
    1. Hindricks G., Taborsky M., Glikson M., Heinrich U., Schumacher B., Katz A., Brachmann J., Lewalter T., Goette A., Block M., Kautzner J., Sack S., Husser D., Piorkowski C., Søgaard P. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): A randomised controlled trial. Lancet. 2014;384(9943):583–590. doi: 10.1016/S0140-6736(14)61176-4.
    1. Padeletti L., Botto G.L., Curnis A., De Ruvo E., D’Onofrio A., Gronda E., Ricci R.P., Vado A., Zanotto G., Zecchin M., Antoniou X., Gargaro A. Selection of potential predictors of worsening heart failure. J. Cardiovasc. Med. 2015;16(11):782–789. doi: 10.2459/JCM.0000000000000171.
    1. Morgan J.M., Kitt S., Gill J., McComb J.M., Ng G.A., Raftery J., Roderick P., Seed A., Williams S.G., Witte K.K., Wright D.J., Harris S., Cowie M.R. Remote management of heart failure using implantable electronic devices. Eur. Heart J. 2017;38:2352–2360. doi: 10.1093/eurheartj/ehx227.
    1. Salzano A., D’Assante R., Stagnaro F.M., Valente V., Crisci G., Giardino F., Arcopinto M., Bossone E., Marra A.M., Cittadini A. Heart failure management during COVID-19 outbreak in Italy. Telemedicine experience from a heart failure university tertiary referral centre. Eur. J Heart Fail. 2020 doi: 10.1002/ejhf.1911. ejhf.1911.
    1. Italian President of the Council of Ministers, Italian Minister of Health, Decree of the President of the Council of Ministers, 2020. .
    1. Dunstan D.A., Scott N., Todd A.K. Screening for anxiety and depression: Reassessing the utility of the Zung scales. BMC Psychiatry. 2017;17:1–8. doi: 10.1186/s12888-017-1489-6.
    1. Rosner B., Glynn R.J., Lee M.-L.-T. The Wilcoxon signed rank test for paired comparisons of clustered data. Biometrics. 2006;62:185–192. doi: 10.1111/j.1541-0420.2005.00389.x.
    1. Sheldon M.R., Fillyaw M.J., Thompson W.D. The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiother. Res. Int. 1996;1(4):221–228. doi: 10.1002/(ISSN)1471-286510.1002/pri.v1:410.1002/pri.66.
    1. Sedgwick P. Spearman’s rank correlation coefficient. BMJ. 2014 doi: 10.1136/bmj.g7327. g7327.
    1. Sedgwick P. Multiple hypothesis testing and Bonferroni’s correction. BMJ. 2014;349 doi: 10.1136/bmj.g6284. g6284–g6284.
    1. N.E. Worden, M. Alqasrawi, S.M. Krothapalli, A. Mazur, “Two for the Price of One”: A single-lead implantable cardioverter-defibrillator system with a floating atrial dipole, J. Atr. Fibrillat. 8 (n.d.) 1396. 10.4022/jafib.1396.
    1. Ammar A., Brach M., Trabelsi K., Chtourou H., Boukhris O., Masmoudi L., Bouaziz B., Bentlage E., How D., Ahmed M., Müller P., Müller N., Aloui A., Hammouda O., Paineiras-Domingos L.L., Braakman-Jansen A., Wrede C., Bastoni S., Pernambuco C.S., Mataruna L., Taheri M., Irandoust K., Khacharem A., Bragazzi N.L., Chamari K., Glenn J.M., Bott N.T., Gargouri F., Chaari L., Batatia H., Ali G.M., Abdelkarim O., Jarraya M., El Abed K., Souissi N., Van Gemert-Pijnen L., Riemann B.L., Riemann L., Moalla W., Gómez-Raja J., Epstein M., Sanderman R., Schulz S.V.W., Jerg A., Al-Horani R., Mansi T., Jmail M., Barbosa F., Ferreira-Santos F., Šimunič B., Pišot R., Gaggioli A., Bailey S.J., Steinacker J.M., Driss T., Hoekelmann A. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 international online survey. Nutrients. 2020;12:1–14. doi: 10.3390/nu12061583.
    1. Bromage D.I., Cannatà A., Rind I.A., Gregorio C., Piper S., Shah A.M., McDonagh T.A. The impact of COVID-19 on heart failure hospitalization and management: report from a Heart Failure Unit in London during the peak of the pandemic. Eur. J. Heart Fail. 2020;22:978–984. doi: 10.1002/ejhf.1925.
    1. Greco A., Spagnolo M., Capodanno D. Unmasking psychological reasons of delay in acute coronary syndromes presentation during the COVID-19 pandemic. Catheter. Cardiovasc. Interv. 2020:ccd.29103. doi: 10.1002/ccd.29103.
    1. Greco A., Buccheri S., D’Arrigo P., Calderone D., Agnello F., Monte M., Milluzzo R.P., Franchina A.G., Ingala S., Capodanno D. Outcomes of renin-angiotensin-aldosterone system blockers in patients with COVID-19: a systematic review and meta-analysis. Eur. Hear. J. Cardiovasc. Pharmacother. 2020;6:335–337. doi: 10.1093/ehjcvp/pvaa074.
    1. Aggarwal M., Bozkurt B., Panjrath G., Aggarwal B., Ostfeld R.J., Barnard N.D., Gaggin H., Freeman A.M., Allen K., Madan S., Massera D., Litwin S.E. Lifestyle modifications for preventing and treating heart failure. J. Am. Coll. Cardiol. 2018;72:2391–2405. doi: 10.1016/j.jacc.2018.08.2160.
    1. Lechat P., Hulot J.-S., Escolano S., Mallet A., Leizorovicz A., Werhlen-Grandjean M., Pochmalicki G., Dargie H. Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II trial. Circulation. 2001;103(10):1428–1433. doi: 10.1161/01.CIR.103.10.1428.
    1. Opasich C., Rapezzi C., Lucci D., Gorini M., Pozzar F., Zanelli E., Tavazzi L., Maggioni A.P. Precipitating factors and decision-making processes of short-term worsening heart failure despite “optimal” treatment (from the IN-CHF Registry) Am. J. Cardiol. 2001;88(4):382–387. doi: 10.1016/S0002-9149(01)01683-6.
    1. Swedberg K., Komajda M., Böhm M., Borer J.S., Ford I., Dubost-Brama A., Lerebours G., Tavazzi L. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet. 2010;376(9744):875–885. doi: 10.1016/S0140-6736(10)61198-1.
    1. Yu C.-M., Wang L.i., Chau E., Chan R.-W., Kong S.-L., Tang M.-O., Christensen J., Stadler R.W., Lau C.-P. Intrathoracic impedance monitoring in patients with heart failure: Correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112(6):841–848. doi: 10.1161/CIRCULATIONAHA.104.492207.
    1. Maier S.K.G., Paule S., Jung W., Koller M., Ventura R., Quesada A., Bordachar P., García-Fernández F.J., Schumacher B., Lobitz N., Takizawa K., Ando K., Adachi K., Shoda M. Evaluation of thoracic impedance trends for implant-based remote monitoring in heart failure patients – Results from the (J-)HomeCARE-II Study. J. Electrocardiol. 2019;53:100–108. doi: 10.1016/j.jelectrocard.2019.01.004.
    1. Yu C.-M., Wang L.i., Chau E., Chan R.-W., Kong S.-L., Tang M.-O., Christensen J., Stadler R.W., Lau C.-P. Intrathoracic impedance monitoring in patients with heart failure. Circulation. 2005;112(6):841–848. doi: 10.1161/CIRCULATIONAHA.104.492207.
    1. Miyoshi A., Nishii N., Okamoto Y., Fujita S., Kawamoto K., Okawa K., Hiramatsu S., Nakamura K., Morita H., Ito H. Lifestyle modification or medication to improve condition of patients with asymptomatic heart failure – Monitoring and Management of OptiVol Alert to Reduce Heart Failure Hospitalization II (MOMOTARO II) Study. Circ. J. 2020;84:456–462. doi: 10.1253/circj.CJ-19-0986.

Source: PubMed

3
Se inscrever