Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study

Michela Botta, Anissa M Tsonas, Janesh Pillay, Leonoor S Boers, Anna Geke Algera, Lieuwe D J Bos, Dave A Dongelmans, Marcus W Hollmann, Janneke Horn, Alexander P J Vlaar, Marcus J Schultz, Ary Serpa Neto, Frederique Paulus, PRoVENT-COVID Collaborative Group, Jesse P van Akkeren, Anna Geke Algera, Cheetel K Algoe, Rombout B van Amstel, Onno L Baur, Pablo van de Berg, Alida E van den Berg, Dennis C J J Bergmans, Dido I van den Bersselaar, Freke A Bertens, Alexander J G H Bindels, Milou M de Boer, Sylvia den Boer, Leonoor S Boers, Margriet Bogerd, Lieuwe D J Bos, Michela Botta, Jennifer S Breel, Hendrik de Bruin, Sanne de Bruin, Caro L Bruna, Laura A Buiteman-Kruizinga, Olaf L Cremer, Rogier M Determann, Willem Dieperink, Dave A Dongelmans, Hildegard S Franke, Michal S Galek-Aldridge, Mart J de Graaff, Laura A Hagens, Jasper J Haringman, Sebastiaan T van der Heide, Pim L J van der Heiden, Nanon F L Heijnen, Stephan J P Hiel, Lotte L Hoeijmakers, Liselotte Hol, Markus W Hollmann, Marga E Hoogendoorn, Janneke Horn, Robrecht van der Horst, Evy L K Ie, Dimitri P Ivanov, Nicole Juffermans, Eline Kho, Eline S de Klerk, Ankie W M M Koopman-van Gemert, Matty Koopmans, Songul Kucukcelebi, Michael A Kuiper, Dylan W de Lange, Niels van Mourik, Sunny G L H Nijbroek, Marisa Onrust, Evelien A N Oostdijk, Frederique Paulus, Charlotte J Pennartz, Janesh Pillay, Luigi Pisani, Ilse M Purmer, Thijs C D Rettig, Jan-Paul Roozeman, Michiel T U Schuijt, Marcus J Schultz, Ary Serpa Neto, Mengalvio E Sleeswijk, Marry R Smit, Peter E Spronk, Willemke Stilma, Aart C Strang, Anissa M Tsonas, Pieter R Tuinman, Christel M A Valk, Felicia L Veen-Schra, Lars I Veldhuis, Patricia van Velzen, Ward H van der Ven, Alexander P J Vlaar, Peter van Vliet, Peter H J van der Voort, Louis van Welie, Henrico J F T Wesselink, Hermien H van der Wier-Lubbers, Bas van Wijk, Tineke Winters, Wing Yi Wong, Arthur R H van Zanten, Michela Botta, Anissa M Tsonas, Janesh Pillay, Leonoor S Boers, Anna Geke Algera, Lieuwe D J Bos, Dave A Dongelmans, Marcus W Hollmann, Janneke Horn, Alexander P J Vlaar, Marcus J Schultz, Ary Serpa Neto, Frederique Paulus, PRoVENT-COVID Collaborative Group, Jesse P van Akkeren, Anna Geke Algera, Cheetel K Algoe, Rombout B van Amstel, Onno L Baur, Pablo van de Berg, Alida E van den Berg, Dennis C J J Bergmans, Dido I van den Bersselaar, Freke A Bertens, Alexander J G H Bindels, Milou M de Boer, Sylvia den Boer, Leonoor S Boers, Margriet Bogerd, Lieuwe D J Bos, Michela Botta, Jennifer S Breel, Hendrik de Bruin, Sanne de Bruin, Caro L Bruna, Laura A Buiteman-Kruizinga, Olaf L Cremer, Rogier M Determann, Willem Dieperink, Dave A Dongelmans, Hildegard S Franke, Michal S Galek-Aldridge, Mart J de Graaff, Laura A Hagens, Jasper J Haringman, Sebastiaan T van der Heide, Pim L J van der Heiden, Nanon F L Heijnen, Stephan J P Hiel, Lotte L Hoeijmakers, Liselotte Hol, Markus W Hollmann, Marga E Hoogendoorn, Janneke Horn, Robrecht van der Horst, Evy L K Ie, Dimitri P Ivanov, Nicole Juffermans, Eline Kho, Eline S de Klerk, Ankie W M M Koopman-van Gemert, Matty Koopmans, Songul Kucukcelebi, Michael A Kuiper, Dylan W de Lange, Niels van Mourik, Sunny G L H Nijbroek, Marisa Onrust, Evelien A N Oostdijk, Frederique Paulus, Charlotte J Pennartz, Janesh Pillay, Luigi Pisani, Ilse M Purmer, Thijs C D Rettig, Jan-Paul Roozeman, Michiel T U Schuijt, Marcus J Schultz, Ary Serpa Neto, Mengalvio E Sleeswijk, Marry R Smit, Peter E Spronk, Willemke Stilma, Aart C Strang, Anissa M Tsonas, Pieter R Tuinman, Christel M A Valk, Felicia L Veen-Schra, Lars I Veldhuis, Patricia van Velzen, Ward H van der Ven, Alexander P J Vlaar, Peter van Vliet, Peter H J van der Voort, Louis van Welie, Henrico J F T Wesselink, Hermien H van der Wier-Lubbers, Bas van Wijk, Tineke Winters, Wing Yi Wong, Arthur R H van Zanten

Abstract

Background: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak.

Methods: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342).

Findings: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7-7·1), PEEP was 14·0 cm H2O (IQR 11·0-15·0), and driving pressure was 14·0 cm H2O (11·2-16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0-39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0-15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation.

Interpretation: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19.

Funding: Amsterdam University Medical Centers, location Academic Medical Center.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Figures

Figure 1
Figure 1
Study profile Follow-up to 90 days was completed in 495 patients.
Figure 2
Figure 2
Ventilation parameters Cumulative frequency distribution of tidal volume, PEEP, driving pressure, and respiratory system compliance. Vertical dotted lines represent the median on the first calendar day of ventilation for each variable, and horizontal dotted lines show the respective proportion of patients reaching each cutoff. PEEP=positive end-expiratory pressure.
Figure 3
Figure 3
Cumulative incidence of extubation with death before extubation as a competing risk (A) and 28-day survival (B) in the overall cohort (n=530)

References

    1. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720.
    1. Center for Systems Science and Engineering COVID-19 dashboard. Johns Hopkins University and Medicine. 2020.
    1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. 2020;323:1545–1546.
    1. Zangrillo A, Beretta L, Scandroglio AM, et al. Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19 ARDS in Milan, Italy. Crit Care Resusc. 2020;22:200–211.
    1. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323:1574–1581.
    1. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395:1763–1770.
    1. Auld SC, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med. 2020;48:e799–e804.
    1. Qian Z, Alaa AM, van der Schaar M, Ercole A. Between-centre differences for COVID-19 ICU mortality from early data in England. Intensive Care Med. 2020;46:1779–1780.
    1. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308.
    1. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755.
    1. Constantin JM, Jabaudon M, Lefrant JY, et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019;7:870–880.
    1. Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318:1335–1345.
    1. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–2168.
    1. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378:1965–1975.
    1. Goligher EC, Tomlinson G, Hajage D, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc bayesian analysis of a randomized clinical trial. JAMA. 2018;320:2251–2259.
    1. Boers NS, Botta M, Tsonas AM, et al. PRactice of VENTilation in Patients with Novel Coronavirus Disease (PRoVENT-COVID): rationale and protocol for a national multicenter observational study in the Netherlands. Ann Transl Med. 2020;8
    1. WHO . World Health Organization; Geneva: 2020. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected: interim guidance, 25 January 2020.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533.
    1. Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of ventilator-free days in critical care research. Am J Respir Crit Care Med. 2019;200:828–836.
    1. Salluh JIF, Ramos F, Chiche JD. Delivering evidence-based critical care for mechanically ventilated patients with COVID-19. Lancet Respir Med. 2020;8:756–758.
    1. Camporota L, Vasques F, Sanderson B, Barrett NA, Gattinoni L. Identification of pathophysiological patterns for triage and respiratory support in COVID-19. Lancet Respir Med. 2020;8:752–754.
    1. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06192-2. published online July 29.
    1. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.
    1. Neto AS, Barbas CSV, Simonis FD, et al. Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study. Lancet Respir Med. 2016;4:882–893.
    1. Bos LDJ. COVID-19-related acute respiratory distress syndrome: not so atypical. Am J Respir Crit Care Med. 2020;202:622–624.
    1. Haudebourg AF, Perier F, Tuffet S, et al. Respiratory mechanics of COVID-19- versus non-COVID-19-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;202:287–290.
    1. Grasselli G, Tonetti T, Protti A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30370-2. published online Aug 27.
    1. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–1102.
    1. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region—case series. N Engl J Med. 2020;382:2012–2022.
    1. Bos LDJ, Paulus F, Vlaar APJ, Beenen LFM, Schultz MJ. Subphenotyping acute respiratory distress syndrome in patients with COVID-19: consequences for ventilator management. Ann Am Thorac Soc. 2020;17:1161–1163.
    1. Ziehr DR, Alladina J, Petri CR, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020;201:1560–1564.
    1. Schenck EJ, Hoffman K, Goyal P, et al. Respiratory mechanics and gas exchange in COVID-19-associated respiratory failure. Ann Am Thorac Soc. 2020;17:1158–1161.
    1. Guérin C, Beuret P, Constantin JM, et al. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018;44:22–37.
    1. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–481.

Source: PubMed

3
Se inscrever