The Human Microbiota and Obesity: A Literature Systematic Review of In Vivo Models and Technical Approaches

Lucrecia Carrera-Quintanar, Daniel Ortuño-Sahagún, Noel N Franco-Arroyo, Juan M Viveros-Paredes, Adelaida S Zepeda-Morales, Rocio I Lopez-Roa, Lucrecia Carrera-Quintanar, Daniel Ortuño-Sahagún, Noel N Franco-Arroyo, Juan M Viveros-Paredes, Adelaida S Zepeda-Morales, Rocio I Lopez-Roa

Abstract

Obesity is a noncommunicable disease that affects a considerable part of humanity. Recently, it has been recognized that gut microbiota constitutes a fundamental factor in the triggering and development of a large number of pathologies, among which obesity is one of the most related to the processes of dysbiosis. In this review, different animal model approaches, methodologies, and genome scale metabolic databases were revisited to study the gut microbiota and its relationship with metabolic disease. As a data source, PubMed for English-language published material from 1 January 2013, to 22 August 2018, were screened. Some previous studies were included if they were considered classics or highly relevant. Studies that included innovative technical approaches or different in vivo or in vitro models for the study of the relationship between gut microbiota and obesity were selected after a 16-different-keyword exhaustive search. A clear panorama of the current available options for the study of microbiota's influence on obesity, both for animal model election and technical approaches, is presented to the researcher. All the knowledge generated from the study of the microbiota opens the possibility of considering fecal transplantation as a relevant therapeutic alternative for obesity and other metabolic disease treatment.

Keywords: animal model; human; inflammatory disease; microbiota; obesity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Primary possibilities for microbiota research. To understand the roles and interactions of the microbiota, we can start from the animal sources for (a) the development of an in vivo model and to obtain samples such as feces or microbiota from the gut, and (b) to obtain gut regions and to develop in vitro continuous organ cultures that mimic the biological environment. Likewise, once the samples from the animal models are obtained, (c) culturomics can be used as a powerful approach to identify the uncultured members of the gut, search for differences between species at more than the phylum level, and generate results more quickly by coupling tools such as (d) matrix-assisted laser desorption/ionization–time of flight (MALDI–TOF) to generate valid and reproducible results. On the other hand, for both the culture and samples, the researcher can use (e) the metagenomics approach, which can be divided into two main techniques: (f) The 16S ribosomal sequence amplification, which provides information related to phyla and the abundance in the sample, or (g) whole microbial DNA sequencing, which provides more information than simply the phylum or abundance, showing the relationship between microbial enzymes, metabolic pathways, or genetic expression, and diseases such as obesity and others. This figure was made using Creative Commons resources and cannot be copyrighted by others.

References

    1. World Health Organ Obesity and Overweight. [(accessed on 21 August 2018)]; Available online: .
    1. Hruby A., Hu F.B. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics. 2015;33:673–689. doi: 10.1007/s40273-014-0243-x.
    1. Duranti S., Ferrario C., van Sinderen D., Ventura M., Turroni F. Obesity and microbiota: An example of an intricate relationship. Genes Nutr. 2017;12:18. doi: 10.1186/s12263-017-0566-2.
    1. Carrera-Quintanar L., López Roa R.I., Quintero-Fabián S., Sánchez-Sánchez M.A., Vizmanos B., Ortuño-Sahagún D. Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediat. Inflamm. 2018;2018:9734845. doi: 10.1155/2018/9734845.
    1. Goodman A.L. In vivo and animal models of the human gut microbiome. In: Marchesi J.R., editor. Humman Microbiota Microbiome. CABI; Wallingford, UK: 2014. pp. 124–135.
    1. Ellegaard K.M., Engel P. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota. Front. Microbiol. 2016;7:1475. doi: 10.3389/fmicb.2016.01475.
    1. Murillo-Rincon A.P., Klimovich A., Pemöller E., Taubenheim J., Mortzfeld B., Augustin R., Bosch T.C.G. Spontaneous body contractions are modulated by the microbiome of Hydra. Sci. Rep. 2017;7:15937. doi: 10.1038/s41598-017-16191-x.
    1. Buzgariu W., Al Haddad S., Tomczyk S., Wenger Y., Galliot B. Multi-functionality and plasticity characterize epithelial cells in Hydra. Tissue Barriers. 2015;3:e1068908. doi: 10.1080/21688370.2015.1068908.
    1. Tomczyk S., Fischer K., Austad S., Galliot B. Hydra, a powerful model for aging studies. Invertebr. Reprod. Dev. 2015;59:11–16. doi: 10.1080/07924259.2014.927805.
    1. Augustin R., Schröder K., Rincón A.P.M., Fraune S., Anton-Erxleben F., Herbst E.M., Wittlieb J., Schwentner M., Grötzinger J., Wassenaar T.M., et al. A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nat. Commun. 2017;8:698. doi: 10.1038/s41467-017-00625-1.
    1. Deines P., Bosch T.C.G. Transitioning from Microbiome Composition to Microbial Community Interactions: The Potential of the Metaorganism Hydra as an Experimental Model. Front. Microbiol. 2016;7:1610. doi: 10.3389/fmicb.2016.01610.
    1. Greenblum S., Carr R., Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell. 2015;160:583–594. doi: 10.1016/j.cell.2014.12.038.
    1. Raymann K., Bobay L.-M., Moran N.A. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Mol. Ecol. 2018;27:2057–2066. doi: 10.1111/mec.14434.
    1. Powell E., Ratnayeke N., Moran N.A. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol. Ecol. 2016;25:4461–4471. doi: 10.1111/mec.13787.
    1. Ellegaard K.M., Tamarit D., Javelind E., Olofsson T.C., Andersson S.G.E., Vásquez A. Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genom. 2015;16:284. doi: 10.1186/s12864-015-1476-6.
    1. Stones D.H., Fehr A.G.J., Thompson L., Rocha J., Perez-Soto N., Madhavan V.T.P., Voelz K., Krachler A.M. Zebrafish (Danio rerio) as a Vertebrate Model Host to Study Colonization, Pathogenesis, and Transmission of Foodborne Escherichia coli O157. mSphere. 2017;2:e00365–17. doi: 10.1128/mSphereDirect.00365-17.
    1. Sheng Y., Ren H., Limbu S.M., Sun Y., Qiao F., Zhai W., Du Z.-Y., Zhang M. The Presence or Absence of Intestinal Microbiota Affects Lipid Deposition and Related Genes Expression in Zebrafish (Danio rerio) Front. Microbiol. 2018;9:1124. doi: 10.3389/fmicb.2018.01124.
    1. Zac Stephens W., Burns A.R., Stagaman K., Wong S., Rawls J.F., Guillemin K., Bohannan B.J.M. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016;10:644–654. doi: 10.1038/ismej.2015.140.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Wong S., Stephens W.Z., Burns A.R., Stagaman K., David L.A., Bohannan B.J.M., Guillemin K., Rawls J.F. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut. mBio. 2015;6:e00687-15. doi: 10.1128/mBio.00687-15.
    1. Valenzuela M.-J., Caruffo M., Herrera Y., Medina D.A., Coronado M., Feijóo C.G., Muñoz S., Garrido D., Troncoso M., Figueroa G., et al. Evaluating the Capacity of Human Gut Microorganisms to Colonize the Zebrafish Larvae (Danio rerio) Front. Microbiol. 2018;9:1032. doi: 10.3389/fmicb.2018.01032.
    1. Sun L., Ma L., Ma Y., Zhang F., Zhao C., Nie Y. Insights into the role of gut microbiota in obesity: Pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell. 2018;9:397–403. doi: 10.1007/s13238-018-0546-3.
    1. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Boulangé C.L., Neves A.L., Chilloux J., Nicholson J.K., Dumas M.-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:42. doi: 10.1186/s13073-016-0303-2.
    1. Wang Y., Kuang Z., Yu X., Ruhn K.A., Kubo M., Hooper L.V. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357:912–916. doi: 10.1126/science.aan0677.
    1. Orland F.J., Blayney J.R., Harrison R.W., Reyniers J.A., Trexler P.C., Ervin R.F., Gordon H.A., Wagner M. Experimental caries in germfree rats inoculated with enterococci. J. Am. Dent. Assoc. 1955;50:259–272. doi: 10.14219/jada.archive.1955.0061.
    1. Martín R., Bermúdez-Humarán L.G., Langella P. Gnotobiotic Rodents: An In Vivo Model for the Study of Microbe-Microbe Interactions. Front. Microbiol. 2016;7:409. doi: 10.3389/fmicb.2016.00409.
    1. Sugahara H., Odamaki T., Fukuda S., Kato T., Xiao J., Abe F., Kikuchi J., Ohno H. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 2015;5:13548. doi: 10.1038/srep13548.
    1. Aron-Wisnewsky J., Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat. Rev. Nephrol. 2016;12:169–181. doi: 10.1038/nrneph.2015.191.
    1. Li D., Chen H., Mao B., Yang Q., Zhao J., Gu Z., Zhang H., Chen Y.Q., Chen W. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Sci. Rep. 2017;8:45840. doi: 10.1038/srep45840.
    1. Lecomte V., Kaakoush N.O., Maloney C.A., Raipuria M., Huinao K.D., Mitchell H.M., Morris M.J. Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters. PLoS ONE. 2015;10:e0126931. doi: 10.1371/journal.pone.0126931.
    1. Flemer B., Gaci N., Borrel G., Sanderson I.R., Chaudhary P.P., Tottey W., O’Toole P.W., Brugère J.F. Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes. 2017;8:428–439. doi: 10.1080/19490976.2017.1334033.
    1. Al-awar A., Kupai K., Veszelka M., Szűcs G., Attieh Z., Murlasits Z., Török S., Pósa A., Varga C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016;2016:1–12. doi: 10.1155/2016/9051426.
    1. Tulstrup M.V.-L., Christensen E.G., Carvalho V., Linninge C., Ahrné S., Højberg O., Licht T.R., Bahl M.I. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class. PLoS ONE. 2015;10:e0144854. doi: 10.1371/journal.pone.0144854.
    1. Ericsson A.C., Akter S., Hanson M.M., Busi S.B., Parker T.W., Schehr R.J., Hankins M.A., Ahner C.E., Davis J.W., Franklin C.L., et al. Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota. Oncotarget. 2015;6:33689–33704. doi: 10.18632/oncotarget.5604.
    1. Rabot S., Jaglin M., Daugé V., Naudon L. Impact of the gut microbiota on the neuroendocrine and behavioural responses to stress in rodents. OCL. 2016;23:D116. doi: 10.1051/ocl/2015036.
    1. Chen M., Lu B., Li Y., Wang Y., Zheng H., Zhong D., Liao Z., Wang M., Ma F., Liao Q., et al. Metabolomics insights into the modulatory effects of long-term compound polysaccharide intake in high-fat diet-induced obese rats. Nutr. Metab. 2018;15:8. doi: 10.1186/s12986-018-0246-2.
    1. Marques C., Meireles M., Norberto S., Leite J., Freitas J., Pestana D., Faria A., Calhau C. High-fat diet-induced obesity Rat model: A comparison between Wistar and Sprague-Dawley Rat. Adipocyte. 2015;5:11–21. doi: 10.1080/21623945.2015.1061723.
    1. Sciascia Q., Daş G., Metges C.C. REVIEW: The pig as a model for humans: Effects of nutritional factors on intestinal function and health. J. Anim. Sci. 2016;94:441–452. doi: 10.2527/jas.2015-9788.
    1. Yang H., Huang X., Fang S., Xin W., Huang L., Chen C. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Sci. Rep. 2016;6:27427. doi: 10.1038/srep27427.
    1. Rérat A., Fiszlewicz M., Giusi A., Vaugelade P. Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty acids in the digestive tract of conscious pigs. J. Anim. Sci. 1987;64:448–456. doi: 10.2527/jas1987.642448x.
    1. Von Engelhardt W., Bartels J., Kirschberger S., Meyer zu Düttingdorf H.D., Busche R. Role of short-chain fatty acids in the hind gut. Vet. Q. 1998;20(Suppl. 3):S52–S59. doi: 10.1080/01652176.1998.9694970.
    1. Fan P., Liu P., Song P., Chen X., Ma X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 2017;7:43412. doi: 10.1038/srep43412.
    1. Heinritz S.N., Weiss E., Eklund M., Aumiller T., Heyer C.M.E., Messner S., Rings A., Louis S., Bischoff S.C., Mosenthin R. Impact of a High-Fat or High-Fiber Diet on Intestinal Microbiota and Metabolic Markers in a Pig Model. Nutrients. 2016;8:317. doi: 10.3390/nu8050317.
    1. Franzenburg S., Fraune S., Altrock P.M., Künzel S., Baines J.F., Traulsen A., Bosch T.C. Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME J. 2013;7:781–790. doi: 10.1038/ismej.2012.156.
    1. Kešnerová L., Mars R.A.T., Ellegaard K.M., Troilo M., Sauer U., Engel P. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 2017;15:e2003467. doi: 10.1371/journal.pbio.2003467.
    1. Marcobal A., Yusufaly T., Higginbottom S., Snyder M., Sonnenburg J.L., Mias G.I. Metabolome progression during early gut microbial colonization of gnotobiotic mice. Sci. Rep. 2015;5:11589. doi: 10.1038/srep11589.
    1. Heinritz S.N., Weiss E., Eklund M., Aumiller T., Louis S., Rings A., Messner S., Camarinha-Silva A., Seifert J., Bischoff S.C., et al. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet. PLoS ONE. 2016;11:e0154329. doi: 10.1371/journal.pone.0154329.
    1. Tanner S.A., Zihler Berner A., Rigozzi E., Grattepanche F., Chassard C., Lacroix C. In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota. PLoS ONE. 2014;9:e94123. doi: 10.1371/journal.pone.0094123.
    1. Poeker S.A., Geirnaert A., Berchtold L., Greppi A., Krych L., Steinert R.E., de Wouters T., Lacroix C. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS) Sci. Rep. 2018;8:4318. doi: 10.1038/s41598-018-22438-y.
    1. Finegold S.M., Sutter V.L., Sugihara P.T., Elder H.A., Lehmann S.M., Phillips R.L. Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am. J. Clin. Nutr. 1977;30:1781–1792. doi: 10.1093/ajcn/30.11.1781.
    1. Hiergeist A., Gläsner J., Reischl U., Gessner A. Analyses of Intestinal Microbiota: Culture versus Sequencing. ILAR J. 2015;56:228–240. doi: 10.1093/ilar/ilv017.
    1. Lok C. Mining the microbial dark matter. Nature. 2015;522:270–273. doi: 10.1038/522270a.
    1. Lagier J.-C., Khelaifia S., Alou M.T., Ndongo S., Dione N., Hugon P., Caputo A., Cadoret F., Traore S.I., Dubourg G., et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016;1:16203. doi: 10.1038/nmicrobiol.2016.203.
    1. Rahi P., Prakash O., Shouche Y.S. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists. Front. Microbiol. 2016;7:1359. doi: 10.3389/fmicb.2016.01359.
    1. Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. doi: 10.3389/fmicb.2015.00791.
    1. Tseng C.-H., Wu C.-Y. The gut microbiome in obesity. J. Formos. Med. Assoc. Taiwan Yi Zhi. 2018 doi: 10.1016/j.jfma.2018.07.009.
    1. Srinivasan R., Karaoz U., Volegova M., MacKichan J., Kato-Maeda M., Miller S., Nadarajan R., Brodie E.L., Lynch S.V. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens. PLoS ONE. 2015;10:e0117617. doi: 10.1371/journal.pone.0117617.
    1. Angelakis E., Lagier J.-C. Samples and techniques highlighting the links between obesity and microbiota. Microb. Pathog. 2017;106:119–126. doi: 10.1016/j.micpath.2016.01.024.
    1. Zhang C., Zhao L. Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Med. 2016;8:41. doi: 10.1186/s13073-016-0304-1.
    1. Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74. doi: 10.1126/science.1093857.
    1. Hakovirta J.R., Prezioso S., Hodge D., Pillai S.P., Weigel L.M. Identification and Analysis of Informative Single Nucleotide Polymorphisms in 16S rRNA Gene Sequences of the Bacillus cereus Group. J. Clin. Microbiol. 2016;54:2749–2756. doi: 10.1128/JCM.01267-16.
    1. Bacci G., Bani A., Bazzicalupo M., Ceccherini M.T., Galardini M., Nannipieri P., Pietramellara G., Mengoni A. Evaluation of the Performances of Ribosomal Database Project (RDP) Classifier for Taxonomic Assignment of 16S rRNA Metabarcoding Sequences Generated from Illumina-Solexa NGS. J. Genom. 2015;3:36–39. doi: 10.7150/jgen.9204.
    1. Yilmaz P., Parfrey L.W., Yarza P., Gerken J., Pruesse E., Quast C., Schweer T., Peplies J., Ludwig W., Glöckner F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–D648. doi: 10.1093/nar/gkt1209.
    1. Vollmers J., Wiegand S., Kaster A.-K. Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist’s Perspective—Not Only Size Matters! PLoS ONE. 2017;12:e0169662. doi: 10.1371/journal.pone.0169662.
    1. Meisel J.S., Grice E.A. The Human Microbiome. In: Ginsburg G.S., Willard H.F., editors. Genomic Precision Medicine. 3rd ed. Academic Press; Boston, MA, USA: 2017. pp. 63–77. Chapter 4.
    1. Hugon P., Lagier J.-C., Robert C., Lepolard C., Papazian L., Musso D., Vialettes B., Raoult D. Molecular Studies Neglect Apparently Gram-Negative Populations in the Human Gut Microbiota. J. Clin. Microbiol. 2013;51:3286–3293. doi: 10.1128/JCM.00473-13.
    1. Angelakis E., Bachar D., Henrissat B., Armougom F., Audoly G., Lagier J.-C., Robert C., Raoult D. Glycans affect DNA extraction and induce substantial differences in gut metagenomic studies. Sci. Rep. 2016;6:26276. doi: 10.1038/srep26276.
    1. Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x.
    1. Wesolowska-Andersen A., Bahl M.I., Carvalho V., Kristiansen K., Sicheritz-Pontén T., Gupta R., Licht T.R. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome. 2014;2:19. doi: 10.1186/2049-2618-2-19.
    1. Dilhari A., Sampath A., Gunasekara C., Fernando N., Weerasekara D., Sissons C., McBain A., Weerasekera M. Evaluation of the impact of six different DNA extraction methods for the representation of the microbial community associated with human chronic wound infections using a gel-based DNA profiling method. AMB Express. 2017;7:179. doi: 10.1186/s13568-017-0477-z.
    1. Chen C., Huang H., Wu C.H. Methods Molecular Biology. Volume 1558. Springer; Clifton, NJ, USA: 2017. Protein Bioinformatics Databases and Resources; pp. 3–39.
    1. Krishnan S., Alden N., Lee K. Pathways and Functions of Gut Microbiota Metabolism Impacting Host Physiology. Curr. Opin. Biotechnol. 2015;36:137–145. doi: 10.1016/j.copbio.2015.08.015.
    1. Zhang C., Hua Q. Applications of Genome-Scale Metabolic Models in Biotechnology and Systems Medicine. Front. Physiol. 2016;6:413. doi: 10.3389/fphys.2015.00413.
    1. Ha C.W., Lam Y.Y., Holmes A.J. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J. Gastroenterol. WJG. 2014;20:16498–16517. doi: 10.3748/wjg.v20.i44.16498.
    1. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092.
    1. Integrative HMP (iHMP) Research Network Consortium The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host Microbe. 2014;16:276–289. doi: 10.1016/j.chom.2014.08.014.
    1. Blanco-Míguez A., Gutiérrez-Jácome A., Fdez-Riverola F., Lourenço A., Sánchez B. MAHMI database: A comprehensive MetaHit-based resource for the study of the mechanism of action of the human microbiota. Database. 2017;2017 doi: 10.1093/database/baw157.
    1. Davis S.C., Yadav J.S., Barrow S.D., Robertson B.K. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. MicrobiologyOpen. 2017 doi: 10.1002/mbo3.476.
    1. Shang Y., Khafipour E., Derakhshani H., Sarna L.K., Woo C.W., Siow Y.L., Karmin O. Short Term High Fat Diet Induces Obesity-Enhancing Changes in Mouse Gut Microbiota That are Partially Reversed by Cessation of the High Fat Diet. Lipids. 2017;52:499–511. doi: 10.1007/s11745-017-4253-2.
    1. Miele L., Giorgio V., Alberelli M.A., De Candia E., Gasbarrini A., Grieco A. Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Curr. Cardiol. Rep. 2015;17:120. doi: 10.1007/s11886-015-0671-z.
    1. Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F., Dallinga–Thie G.M., Ackermans M.T., Serlie M.J., Oozeer R., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916.e7. doi: 10.1053/j.gastro.2012.06.031.
    1. Jayasinghe T.N., Chiavaroli V., Holland D.J., Cutfield W.S., O’Sullivan J.M. The New Era of Treatment for Obesity and Metabolic Disorders: Evidence and Expectations for Gut Microbiome Transplantation. Front. Cell. Infect. Microbiol. 2016;6:15. doi: 10.3389/fcimb.2016.00015.

Source: PubMed

3
Se inscrever