Reduced neutrophil elastase inhibitor elafin and elevated transforming growth factor-β1 are linked to inflammatory response in sputum of cystic fibrosis patients with Pseudomonas aeruginosa

Jan C Thomassen, Tobias Trojan, Maxine Walz, Christina Vohlen, Gregor Fink, Ernst Rietschel, Miguel A Alejandre Alcazar, Silke van Koningsbruggen-Rietschel, Jan C Thomassen, Tobias Trojan, Maxine Walz, Christina Vohlen, Gregor Fink, Ernst Rietschel, Miguel A Alejandre Alcazar, Silke van Koningsbruggen-Rietschel

Abstract

Research question: Pulmonary disease progression in patients with cystic fibrosis (CF) is characterised by inflammation and fibrosis and aggravated by Pseudomonas aeruginosa (Pa). We investigated the impact of Pa specifically on: 1) protease/antiprotease balance; 2) inflammation; and 3) the link of both parameters to clinical parameters of CF patients.

Methods: Transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-8, neutrophil elastase (NE) and elastase inhibitor elafin were measured (ELISA assays), and gene expression of the NF-κB pathway was assessed (reverse transcriptase PCR) in the sputum of 60 CF patients with a minimum age of 5 years. Spirometry was assessed according to American Thoracic Society guidelines.

Results: Our results demonstrated the following: 1) NE was markedly increased in Pa-positive sputum, whereas elafin was significantly decreased; 2) increased IL-1β/IL-8 levels were associated with both Pa infection and reduced forced expiratory volume in 1 s, and sputum TGF-β1 was elevated in Pa-infected CF patients and linked to an impaired lung function; and 3) gene expression of NF-κB signalling components was increased in sputum of Pa-infected patients, and these findings were positively correlated with IL-8.

Conclusion: Our study links Pa infection to an imbalance of NE and NE inhibitor elafin and increased inflammatory mediators. Moreover, our data demonstrate an association between high TGF-β1 sputum levels and a progress in chronic lung inflammation and pulmonary fibrosis in CF. Controlling the excessive airway inflammation by inhibition of NE and TGF-β1 might be promising therapeutic strategies in future CF therapy and a possible complement to cystic fibrosis transmembrane conductance regulator (CFTR) modulators.

Conflict of interest statement

Conflict of interest: J.C. Thomassen has nothing to disclose. Conflict of interest: T. Trojan has nothing to disclose. Conflict of interest: M. Walz has nothing to disclose. Conflict of interest: C. Vohlen has nothing to disclose. Conflict of interest: G. Fink has nothing to disclose. Conflict of interest: E. Rietschel has nothing to disclose. Conflict of interest: M.A. Alejandre Alcazar has nothing to disclose. Conflict of interest: S. van Koningsbruggen-Rietschel has nothing to disclose.

Copyright ©The authors 2021.

Figures

FIGURE 1
FIGURE 1
Assessment of a) neutrophil elastase (NE) concentrations (ng·mL−1) and b) elafin concentrations (pg·mL−1) in sputum of cystic fibrosis (CF) patients, related to Pseudomonas infection: P. aeruginosa-negative CF patients (n=32) and P. aeruginosa-positive CF patients (n=16). Data presented as median and interquartile range; Mann–Whitney U-test performed. **: p<0.01; ***: p<0.001.
FIGURE 2
FIGURE 2
a) Interleukin (IL)-8 and b) IL-1β concentrations (pg·mL−1) in sputum of cystic fibrosis (CF) patients, related to Pseudomonas infection: P. aeruginosa-negative CF patients (n=34) and P. aeruginosa-positive CF patients (n=18). Data presented as median and interquartile range; Mann–Whitney U-test performed. ****: p<0.0001.
FIGURE 3
FIGURE 3
a) Interleukin (IL)-1β and b) IL-8 concentrations (pg·mL−1) related to forced expiratory volume in 1 s (FEV1) values: elevated IL-1β and IL-8 levels were detected in cystic fibrosis (CF) patients with FEV1 <80% (n=27) compared to CF patients with FEV1 values ≥80% (n=25). Data presented as median and interquartile range; Mann–Whitney U-test performed. **: p<0.01; ****: p<0.0001.
FIGURE 4
FIGURE 4
Pearson correlation between interleukin (IL)-1β and IL-8 concentrations (pg·mL−1) in sputum of cystic fibrosis patients (n=52). A positive correlation between IL-1β and IL-8 levels was detected (r=0.763; ****: p<0.0001).
FIGURE 5
FIGURE 5
Assessment of sputum transforming growth factor-β1 (TGF-β1) concentrations (pg·mL−1) in cystic fibrosis patients by specific TGF-β1 ELISA. Correlation to a) Pseudomonas aeruginosa colonisation (P. aeruginosa-negative: n=33; P. aeruginosa-positive: n=17) and b) forced expiratory volume in 1 s (FEV1) % predicted (FEV1 ≥80%: n=23; FEV1 <80%: n=27). Data presented as median and interquartile range; Mann–Whitney U-test performed. *: p<0.05; ****: p<0.0001.
FIGURE 6
FIGURE 6
Spearman correlation between concentrations of sputum transforming growth factor-β1 (TGF-β1) (pg·mL−1) and proinflammatory cytokines interleukin (IL)-1β and IL-8 in cystic fibrosis patients (n=50). Positive correlations between a) IL-1β and TGF-β1 levels (r=0.707; ****: p<0.0001) and b) IL-8 and TGF-β1 levels (r=0.670; ****: p<0.0001).
FIGURE 7
FIGURE 7
Gene expression of NF-κB signalling cascade mediators in cystic fibrosis sputum cells of 43 patients: p50, p65, IKKα and interleukin (IL)-6 levels were determined by quantitative reverse transcriptase PCR. Significantly elevated mRNA expression of mediators of the NF-κB signalling cascade: a) IKKα, b) IL-6, c) p50 and d) p65. Data presented as median and interquartile range; Mann–Whitney U-test performed. P. aeruginosa: Pseudomonas aeruginosa. *: p<0.05; **: p<0.01.
FIGURE 8
FIGURE 8
Spearman correlations between level of interleukin (IL)-8 and quantitative mRNA expression of p50 and p65. Significant positive correlations between IL-8 levels and quantity of mRNA expression of the NF-κB signalling proteins a) p50 (r=0.402; **: p

FIGURE 9

Simplified presentation of the vicious…

FIGURE 9

Simplified presentation of the vicious circle of chronic inflammation in cystic fibrosis (CF)…

FIGURE 9
Simplified presentation of the vicious circle of chronic inflammation in cystic fibrosis (CF) as a result of high neutrophilic activity, disruption of the homeostatic protease/antiprotease balance and microbial infection with P. aeruginosa in the CF lung causing chronic inflammatory lung disease and pulmonary fibrosis. NE: neutrophil elastase; TGF-β1: transforming growth factor-β1; IL: interleukin.
All figures (9)
FIGURE 9
FIGURE 9
Simplified presentation of the vicious circle of chronic inflammation in cystic fibrosis (CF) as a result of high neutrophilic activity, disruption of the homeostatic protease/antiprotease balance and microbial infection with P. aeruginosa in the CF lung causing chronic inflammatory lung disease and pulmonary fibrosis. NE: neutrophil elastase; TGF-β1: transforming growth factor-β1; IL: interleukin.

References

    1. De Boeck K, Amaral MD. Progress in therapies of cystic fibrosis. Lancet Respir Med 2016; 4: 662–674. doi:10.1016/S2213-2600(16)00023-0
    1. Zolin A, Naehrlich L, van Rens Jet al. ECFSPR Annual Report 2015. Date last updated and accessed: Nov 2017.
    1. Burkett A, Vandemheen KL, Giesbrecht-Lewis T, et al. . Persistency of Pseudomonas aeruginosa in sputum cultures and clinical outcomes in adult patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2012; 31: 1603–1610. doi:10.1007/s10096-011-1483-8
    1. Burns JL, Gibson RL, McNamara S, et al. . Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 2001; 183: 444–452. doi:10.1086/318075
    1. Jacques I, Derelle J, Weber M, et al. . Pulmonary evolution of cystic fibrosis patients colonized by Pseudomonas aeruginosa and/or Burkholderia cepacia. Eur J Pediatr 1998; 157: 427–431. doi:10.1007/s004310050844
    1. Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med 2005; 352: 1992–2001. doi:10.1056/NEJMra043184
    1. Locke LW, Myerburg MM, Weiner DJ, et al. . Pseudomonas infection and mucociliary and absorptive clearance in the cystic fibrosis lung. Eur Respir J 2016; 47: 1392–1401. doi:10.1183/13993003.01880-2015
    1. Hentschel J, Fischer N, Janhsen WK, et al. . Protease-antiprotease imbalances differ between cystic fibrosis patients’ upper and lower airway secretions. J Cyst Fibros 2015; 14: 324–333. doi:10.1016/j.jcf.2014.09.003
    1. Scheid P, Kemster L, Griesenbach U, et al. . Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. Eur Respir J 2001; 17: 27–35. doi:10.1183/09031936.01.17100270
    1. Kelly E, Greene CM, McElvaney NG. Targeting neutrophil elastase in cystic fibrosis. Expert Opin Ther Targets 2008; 12: 145–157. doi:10.1517/14728222.12.2.145
    1. Twigg MS, Brockbank S, Lowry P, et al. . The role of serine proteases and antiproteases in the cystic fibrosis lung. Mediators Inflamm 2015; 2015: 293053. doi:10.1155/2015/293053
    1. Gaggar A, Hector A, Bratcher PE, et al. . The role of matrix metalloproteinases in cystic fibrosis lung disease. Eur Respir J 2011; 38: 721–727. doi:10.1183/09031936.00173210
    1. Downey DG, Bell SC, Elborn JS. Neutrophils in cystic fibrosis. Thorax 2009; 64: 81–88. doi:10.1136/thx.2007.082388
    1. Tirouvanziam R. Neutrophilic inflammation as a major determinant in the progression of cystic fibrosis. Drug News Perspect 2006; 19: 609–614. doi:10.1358/dnp.2006.19.10.1068008
    1. Koller DY, Urbanek R, Götz M. Increased degranulation of eosinophil and neutrophil granulocytes in cystic fibrosis. Am J Respir Crit Care Med 1995; 152: 629–633. doi:10.1164/ajrccm.152.2.7633718
    1. Taggart C, Coakley RJ, Greally P, et al. . Increased elastase release by CF neutrophils is mediated by tumor necrosis factor-alpha and interleukin-8. Am J Physiol Lung Cell Mol Physiol 2000; 278: L33–L41. doi:10.1152/ajplung.2000.278.1.L33
    1. Sagel SD, Wagner BD, Anthony MM, et al. . Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med 2012; 186: 857–865. doi:10.1164/rccm.201203-0507OC
    1. Sly PD, Gangell CL, Chen L, et al. . Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 2013; 368: 1963–1970. doi:10.1056/NEJMoa1301725
    1. Guyot N, Butler MW, McNally P, et al. . Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J Biol Chem 2008; 283: 32377–32385. doi:10.1074/jbc.M803707200
    1. Waters VJ, Stanojevic S, Sonneveld N, et al. . Factors associated with response to treatment of pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 2015; 14: 755–762. doi:10.1016/j.jcf.2015.01.007
    1. Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatric Pulmonol 2015; 50: S39–S56. doi:10.1002/ppul.23242
    1. Snodgrass SM, Cihil KM, Cornuet PK, et al. . TGF-β1 inhibits CFTR biogenesis and prevents functional rescue of ΔF508-CFTR in primary differentiated human bronchial epithelial cells. PLoS One 2013; 8: 63167. doi:10.1371/journal.pone.0063167
    1. Zhou-Suckow Z, Duerr J, Hagner M, et al. . Airway mucus, inflammation and remodelling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res 2017; 367: 537–550. doi:10.1007/s00441-016-2562-z
    1. Fritzsching B, Zhou-Suckow Z, Trojanek JB, et al. . Hypoxic epithelial necrosis triggers neutrophilic inflammation via IL1 receptor signalling in cystic fibrosis lung disease. Am J Respir Crit Care Med 2015; 191: 902–913. doi:10.1164/rccm.201409-1610OC
    1. Emerson J, Rosenfeld M, McNamara S, et al. . Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002; 34: 91–100. doi:10.1002/ppul.10127
    1. Aebi C, Bracher R, Liechti-Gallati S, et al. . The age at onset of chronic Pseudomonas aeruginosa colonization in cystic fibrosis: prognostic significance. Eur J Pediatr 1995; 154: Suppl. 4, S69–S73. doi:10.1007/BF02191510
    1. Farrell PM, Rosenstein BJ, White TB, et al. . Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr 2008; 153: S4–S14. doi:10.1016/j.jpeds.2008.05.005
    1. Alejandre Alcázar MA, Morty RE, Lendzian L, et al. . Inhibition of TGF-β signalling and decreased apoptosis in IUGR-associated lung disease in rats. PLoS One 2011; 6: e26371. doi:10.1371/journal.pone.0026371
    1. Laszlo G. Standardisation of lung function testing: helpful guidance from the ATS/ERS Task Force. Thorax 2006; 61: 744–746. doi:10.1136/thx.2006.061648
    1. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168: 918–951. doi:10.1164/rccm.200304-505SO
    1. Doring G, Meisner C, Stern M. A double-blind randomized placebo controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc Natl Acad Sci USA 2007; 104: 11020–11025. doi:10.1073/pnas.0702403104
    1. Sagel SD, Chmiel JF, Konstan MW. Sputum biomarkers of inflammation in cystic fibrosis lung disease. Proc Am Thorac Soc 2007; 4: 406–417. doi:10.1513/pats.200703-044BR
    1. Konstan MW, Morgan WJ, Butler SM, et al. . Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 2007; 151: 134–139.e1. doi:10.1016/j.jpeds.2007.03.006
    1. Craig A, Mai J, Cai S, et al. . Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun 2009; 77: 568–575. doi:10.1128/IAI.00832-08
    1. Rieber N, Brand A, Hector A, et al. . Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol 2013; 190: 1276–1284. doi:10.4049/jimmunol.1202144
    1. DeBoer EM, Swiercz W, Heltshe SL, et al. . Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest 2014; 145: 593–603. doi:10.1378/chest.13-0588
    1. Hector A, Kappler M, Griese M. In vitro inhibition of neutrophil elastase activity by inhaled anti-Pseudomonas antibiotics used in cystic fibrosis patients. Mediators Inflamm 2010; 2010: 809591. doi:10.1155/2010/809591
    1. Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest 1980; 66: 859–862. doi:10.1172/JCI109926
    1. Tojais NF, Cao A, Lai YJ, et al. . Codependence of bone morphogenetic protein receptor 2 and transforming growth factor-β in elastic fiber assembly and its perturbation in pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2017; 37: 1559–1569. doi:10.1161/ATVBAHA.117.309696
    1. Nickel NP, Spiekerkoetter E, Gu M, et al. . Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signalling. Am J Respir Crit Care Med 2015; 191: 1273–1286. doi:10.1164/rccm.201412-2291OC
    1. Chua F, Laurent GJ. Neutrophil elastase-mediator of extracellular matrix destruction and accumulation. Proc Am Thorac Soc 2006; 3: 424–427. doi:10.1513/pats.200603-078AW
    1. Hilgendorff A, Parai K, Ertsey R, et al. . Inhibiting lung elastase activity enables lung growth in mechanically ventilated newborn mice. Am J Respir Crit Care Med 2011; 184: 537–546. doi:10.1164/rccm.201012-2010OC
    1. Borgatti M, Bezzerri V, Mancini I, et al. . Induction of IL-6 gene expression in a CF bronchial epithelial cell line by Pseudomonas aeruginosa is dependent on transcription factors belonging to the Sp1 superfamily. Biochem Biophys Res Commun 2007; 357: 977–983. doi:10.1016/j.bbrc.2007.04.081
    1. Carrabino S, Carpani D, Livraghi A, et al. . Dysregulated interleukin-8 secretion and NF-kappaB activity in human cystic fibrosis nasal epithelial cells. J Cyst Fibros 2006; 5: 113–119. doi:10.1016/j.jcf.2005.12.003
    1. Iannitti RG, Napolioni V, Oikonomou V, et al. . IL1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat Commun 2016; 7: 10791. doi:10.1038/ncomms10791
    1. Nakamura H, Yoshimura K, McElvaney NG, et al. . Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest 1992; 89: 1478–1484. doi:10.1172/JCI115738
    1. Bodas M, Vij N. The NF-kappaB signalling in cystic fibrosis lung disease: pathophysiology and therapeutic potential. Discov Med 2010; 9: 346–356.
    1. Pressler T, Bohmova C, Conway S, et al. . Chronic Pseudomonas aeruginosa infection definition: EuroCareCF Working Group report. J Cyst Fibros 2011; 10: Suppl. 2, S75–S78. doi: 10.1016/S1569-1993(11)60011-8.

Source: PubMed

3
Se inscrever