The effect of citrate in cardiovascular system and clot circuit in critically ill patients requiring continuous renal replacement therapy

Thananda Trakarnvanich, Phatadon Sirivongrangson, Konlawij Trongtrakul, Nattachai Srisawat, Thananda Trakarnvanich, Phatadon Sirivongrangson, Konlawij Trongtrakul, Nattachai Srisawat

Abstract

We aimed to evaluate the impact of citrate on hemodynamic responses and secondary outcomes, including the filter life span, metabolic complications, and levels of inflammatory cytokines, in critically ill patients who required CRRT compared with those who underwent the heparin-free method. This prospective, multicenter, open-label randomized trial compared regional citrate anticoagulation (RCA) with a heparin-free protocol in severe acute kidney injury (AKI) patients who received continuous venovenous hemodiafiltration (CVVHDF) in the postdilution mode. We measured hemodynamic changes using the FloTrac Sensor/EV1000™ Clinical Platform at certain time points after starting CRRT (0, 6, 12, 24, 48, and 72 h.). The levels of inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10 and TNF-ɑ) were measured on days 1 and 3. Forty-one patients were recruited and randomized into the heparin (n = 20) and citrate groups (n = 21). The cardiac performances were not significantly different between the 2 groups at any time point. The inflammatory cytokines declined similarly in both treatment arms. The maximum filter survival time was insignificantly longer in the RCA group than in the heparin-free group (44.64 ± 26.56 h. vs p = 0.693 in citrate and heparin free group). No serious side effects were observed for either treatment arm, even in the group of liver dysfunction patients. RCA did not affect hemodynamic changes during CRRT. Inflammatory cytokines decreased similarly in both treatment arms.The filter life span was longer in the citrate group. RCA is a valid alternative to traditional anticoagulation and results in stable hemodynamic parameters.

Trial registration: ClinicalTrials.gov NCT04865510.

Keywords: Acute kidney injury; CRRT; Clot circuit; Heparin; Regional citrate anticoagulation.

Conflict of interest statement

All the authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1.
Fig. 1.
Study flowchart
Fig. 2
Fig. 2
Survival curves of CRRT patients receiving heparin-free and citrate anticoagulants (straight line, citrate group; dashed line, heparin-free group). The figure shows the Kaplan–Meier curve of the probability of survival from randomization to day 28. CI confidence interval, HR hazard ratio
Fig. 3
Fig. 3
Lactate level of CRRT patients receiving heparin-free and citrate anticoagulants
Fig. 4
Fig. 4
Hemodynamic parameters of CRRT patients receiving heparin-free and citrate anticoagulants

References

    1. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–1423. doi: 10.1007/s00134-015-3934-7.
    1. Gatward JJ, Gibbon GJ, Wrathall G, Padkin A. Renal replacement therapy for acute renal failure: a survey of practice in adult intensive care units in the United Kingdom. Anaesthesia. 2008;63:959–966. doi: 10.1111/j.1365-2044.2008.05514.x.
    1. Kellum JA, Mehta RL, Angus DC, Palevsky P, Ronco C, ADQI Workgroup The first international consensus conference on continuous renal replacement therapy. Kidney Int. 2002;62:1855–63. doi: 10.1046/j.1523-1755.2002.00613.x.
    1. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten H, Ronco C, Kellum JA. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators. Intensive Care. 2007;33:1563–70. doi: 10.1007/s00134-007-0754-4.
    1. Kidney Diseases Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinicalpractice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.
    1. Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt-Ott KM. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance. Acta Physiol (Oxf) 2017;219:554–572. doi: 10.1111/apha.12764.
    1. Kwon O, Molitoris BA, Pescovitz M, Kelly KJ. Urinary actin, interleukin-6, and interleukin-8 may predict sustained ARF after ischemic injury in renal allografts. Am J Kidney Dis. 2003;41:1074–1087. doi: 10.1016/S0272-6386(03)00206-3.
    1. Liangos O, Kolyada A, Tighiouart H, Perianayagam MC, Wald R, Jaber BL. Interleukin-8 and acute kidney injury following cardiopulmonary bypass: a prospective cohort study. Nephron Clin Pract. 2009;113:c148–c154. doi: 10.1159/000232595.
    1. de Fontnouvelle CA, Greenberg JH, Thiessen-Philbrook HR, Zappitelli M, Roth J, Kerr KF, et al. Interleukin-8 and tumor necrosis factor predict acute kidney injury after pediatric cardiac surgery. Ann Thorac Surg. 2017;104:2072–2079. doi: 10.1016/j.athoracsur.2017.04.038.
    1. Seghaye MC, Duchateau J, Grabitz RG, Faymonville ML, Messmer BJ, Buro-Rathsmann K, von Bernuth G. Complement activation during cardiopulmonary bypass in infants and children. Relation to postoperative multiple system organ failure. J Thorac Cardiovasc Surg. 1993;106:978–987. doi: 10.1016/S0022-5223(19)33968-6.
    1. Ataie-Kachoie P, Pourgholami MH, Morris DL. Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev. 2013;24:163–173. doi: 10.1016/j.cytogfr.2012.09.001.
    1. Ataie-Kachoie P, Pourgholami MH, Richardson DR, Morris DL. Gene of the month: interleukin 6 (IL-6) J Clin Pathol. 2014;k67:932–937. doi: 10.1136/jclinpath-2014-202493.
    1. Kavsak PA, Ko DT, Newman AM, Palomaki GE, Lustig V, MacRae AR, Jaffe AS. Risk stratification for heart failure and death in an acute coronary syndrome population using inflammatory cytokines and N-terminal pro-brain natriuretic peptide. Clin Chem. 2007;53:2112–2118. doi: 10.1373/clinchem.2007.090613.
    1. Liu D, et al. Using inflammatory and oxidative biomarkers in urine to predict early acute kidney injury in patients undergoing liver transplantation. Biomarkers. 2014;19:424–429. doi: 10.3109/1354750X.2014.924997.
    1. Sirota JC, et al. Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol. 2013;14:17. doi: 10.1186/1471-2369-14-17.
    1. Zhang J, Tian J, Sun H, Digvijay K, Neri M, Bhargava V, Yin Y, Ronco C. How does continuous renal replacement therapy affect septic acute kidney injury? Blood Purif. 2018;46:326–331. doi: 10.1159/000492026.
    1. Oudemans-van Straaten HM, Kellum JA, Bellomo R. Clinical review: anticoagulation for continuous renal replacement therapy–heparin or citrate? Crit Care. 2011;15:202. doi: 10.1186/cc9358.
    1. Liu D, Huang P, Li X, Ge M, Luo G, Hei Z. Using inflammatory and oxidative biomarkers in urine to predict early acute kidney injury in patients undergoing liver transplantation. Biomarkers. 2014;19:424–429. doi: 10.3109/1354750X.2014.924997.
    1. Gattas DJ, Rajbhandari D, Bradford C, Buhr H, Lo S, Bellomo R. A randomized controlled trial of regional citrate versus regional heparin anticoagulation for continuous renal replacement therapy in critically ill adults. Crit Care Med. 2015;43:1622–1629. doi: 10.1097/CCM.0000000000001004.
    1. Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P, Kijkriengkraikul N, Leelahavanichkul A, Srisawat N, et al. Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial. 2011;15:556–564. doi: 10.1111/j.1744-9987.2011.00996.x.
    1. Dellepiane S, Medica D, Guarena C, Musso T, Quercia AD, Leonardi G, et al. Citrate anion improves chronic dialysis efficacy, reduces systemic inflammation and prevents chemerin-mediated microvascular injury. Sci Rep. 2019;9:10622. doi: 10.1038/s41598-019-47040-8.
    1. Pizzarelli F, Cantaluppi V, Panichi V, Toccafondi A, Ferro G, Farruggio S, Grossini E, Dattolo PC, Miniello V, Migliori M, Grimaldi C, Casani A, Borzumati M, Cusinato S, Capitanini A, Quercia A, Filiberti O, Dani L, Hephaestus study group Citrate high volume on-line hemodiafiltration modulates serum Interleukin-6 and Klotho levels: the multicenter randomized controlled study "Hephaestus". J Nephrol. 2021;34:1701–1710. doi: 10.1007/s40620-020-00943-6.
    1. Bellomo R, Tipping P, Boyce N. Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med. 1993;21:522–6. doi: 10.1097/00003246-199304000-00011.
    1. Hoffmann JN, Faist E. Removal of mediators by continuous hemofiltration in septic patients. World J Surg. 2001;25:651–659. doi: 10.1007/s002680020027.
    1. López-Herce J, Rupérez M, Sánchez C, García C, García E. Effects of initiation of continuous renal replacement therapy on hemodynamics in a pediatric animal model. Ren Fail. 2006;28:171–176. doi: 10.1080/08860220500531146.
    1. Bienholz A, Reis J, Sanli P, de Groot H, Petrat F, Guberina H, et al. Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury. BMC Nephrol. 2017;18:130. doi: 10.1186/s12882-017-0546-1.
    1. Chowdhury S, Lawton T, Akram A, Collin R, Beck J. Citrate versus non-citrate anticoagulation in continuous renal replacement therapy: results following a change in local critical care protocol. I Intensive Care So. 2017;18:47–51. doi: 10.1177/1751143716676820.
    1. Tsujimoto H, Ono S, Hiraki S, et al. Hemoperfusion with polymyxin B-immobilized fibers reduced the number of CD16CD14 monocytes in patients with septic shock. J Endotoxin Res. 2004;10:229–237.
    1. Sık G, Demirbuga A, Annayev A, Citak A. Regional citrate versus systemic heparin anticoagulation for continuous renal replacement therapy in critically ill children. Int J Artif Organs. 2020;43:234–241. doi: 10.1177/0391398819893382.
    1. Toyoshima S, Fukuda T, Masumi S, Nakashima Y, Kawaguchi Y, Nakayama M. Maximum acceptable infusion rate of citrate: relationship between blood ionized calcium levels and cardiovascular effects in anesthetized rats. Clin Nutr. 2006;25:653–660. doi: 10.1016/j.clnu.2006.01.010.
    1. Liu KD, Altmann C, Smits G, Krawczeski CD, Edelstein CL, Devarajan P, et al. Serum interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: a case-control study. Crit Care. 2009;13:R104. doi: 10.1186/cc7940.
    1. Grundström G, Christensson A, Alquist M, Nilsson LG, Segelmark M. Replacement of acetate with citrate in dialysis fluid: a randomized clinical trial of short term safety and fluid biocompatibility. BMC Nephrol. 2013;9:216. doi: 10.1186/1471-2369-14-216.
    1. Panichi V, Fiaccadori E, Rosati A, Fanelli R, Bernabini G, Scatena A, Pizzarelli F. Post-dilution on line haemodiafiltration with citrate dialysate: first clinical experience in chronic dialysis patients. ScientificWorld Journal. 2013;2013:703612. doi: 10.1155/2013/703612.
    1. Klingele M, Stadler T, Fliser D, Speer T, Groesdonk HV, Raddatz A. Long-term continuous renal replacement therapy and anticoagulation with citrate in critically ill patients with severe liver dysfunction. Crit Care. 2017;21:294. doi: 10.1186/s13054-017-1870-3.
    1. Kindgen-Milles D, Brandenburger T, Dimski T. Regional citrate anticoagulation for continuous renal replacement therapy. Curr Opin Crit Care. 2018;24:450–454. doi: 10.1097/MCC.0000000000000547.
    1. Meersch M, Küllmar M, Wempe C, Kindgen-Milles D, Kluge S, Slowinski T, Marx G, Gerss J, Zarbock A, SepNet Critical Care Trials Group Regional citrate versus systemic heparin anticoagulation for continuous renal replacement therapy in critically ill patients with acute kidney injury (RICH) trial: study protocol for a multicentre, randomised controlled trial. BMJ Open. 2019;9:e024411. doi: 10.1136/bmjopen-2018-024411.
    1. Camporota L, Beale R. Pitfalls in haemodynamic monitoring based on the arterial pressure. Crit Care. 2010;14:124–6. doi: 10.1186/cc8845.

Source: PubMed

3
Se inscrever