Formative Evaluation of a Home-Based Physical Activity Intervention for Adolescent Girls-The HERizon Project: A Randomised Controlled Trial

Emma S Cowley, Paula M Watson, Lawrence Foweather, Sarahjane Belton, Chiara Mansfield, Gabriella Whitcomb-Khan, Isabella Cacciatore, Andrew Thompson, Dick Thijssen, Anton J M Wagenmakers, Emma S Cowley, Paula M Watson, Lawrence Foweather, Sarahjane Belton, Chiara Mansfield, Gabriella Whitcomb-Khan, Isabella Cacciatore, Andrew Thompson, Dick Thijssen, Anton J M Wagenmakers

Abstract

Background: This is a formative evaluation study of the HERizon Project, a home-based multi-component physical activity (PA) intervention for adolescent girls in the UK and Ireland. Although not intended, this study coincided with the initial COVID-19 lockdown restrictions.

Methods: A total of 42 female participants, aged 13 to 16 years old (mean = 14.2, SD = 1.1), were randomly allocated to: (i) the HERizon group (n = 22) or (ii) the wait-list control group (n = 20). Participants in the six-week HERizon group were asked to complete three PA sessions each week and engage in weekly behaviour change support video calls. The primary outcome measure was self-reported habitual PA. Secondary outcomes measures included cardiorespiratory fitness (20 m shuttle run), muscular strength (standing long jump), muscular endurance (push up test), and psychosocial outcomes (Perceived Competence Scale, Body Appreciation Scale, Self-Esteem Questionnaire, Behavioural Regulation in Exercise Questionnaire). Quantitative and qualitative process evaluation data were also collected. Outcome measures were assessed at baseline and after the six-week intervention.

Results: There was no significant change in habitual PA between groups (LMM group*time interaction: p = 0.767). The HERizon group had significantly increased cardiorespiratory fitness (p = 0.001), muscular endurance (p = 0.022), intrinsic motivation (p = 0.037), and body appreciation (p < 0.003) in comparison to the wait-list control group. All participants in the intervention group completed the intervention and compliance to the intervention was high (participants completed 18 ± 2 sessions).

Conclusions: Although no change in PA was observed, HERizon resulted in improved physical fitness and psychosocial outcomes. These preliminary findings, alongside positive findings for feasibility and acceptability, highlight potential benefits from the home-based intervention, thus further investigation is warranted.

Keywords: COVID-19; adolescents; behaviour change; girls; intervention study; physical activity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of participants through this study based on the CONSORT 2010 flow diagram.

References

    1. Cristi-Montero C., Chillon P., Labayen I., Casajus J., Gonzalez-Gross M., Vanhelst J., Manios Y., Moreno L., Oretga F., Ruiz J., et al. Cardiometabolic risk through an integrative classification combining physical activity and sedentary behaviour in European adolescents: HELENA study. J. Sport Health Sci. 2019;8:55–62. doi: 10.1016/j.jshs.2018.03.004.
    1. Biddle S., Ciaccioni S., Thomas G., Vergeer I. Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychol. Sport Exerc. 2019;42 doi: 10.1016/j.psychsport.2018.08.011.
    1. Kieszczewska D., Szkutnik A., Siedlecka J., Mazur J. Physical activity, sedentary behaviours and duration of sleep as factors affecting the well-being of young people against the background of environmental moderators. Int. J. Environ. Res. Public Health. 2019;16:915. doi: 10.3390/ijerph16060915.
    1. The UK Chief Medical Officers Physical Activity Guidelines Report. [(accessed on 17 November 2020)]; Available online: .
    1. Lang J., Phillips E., Orpana H., Tremblay M., Ross R., Ortega F., Silva D., Tomkinson G. Field-based measurement of cardiorespiratory fitness to evaluate physical activity interventions. Bull. World Health Organ. 2018;96:794. doi: 10.2471/BLT.18.213728.
    1. Hogstrom G., Nordstrom A., Nordstrom P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infraction later in life: A nationwide cohort study in men. Eur. Heart J. 2014;35:3133–3140. doi: 10.1093/eurheartj/eht527.
    1. Lubans D., Richards J., Hillman C., Faulkner G., Beauchamp M., Nilsson M., Kelly P., Smith J., Raine L., Biddle S. Physical activity for cognitive and mental health in youth: A systematic review of mechanisms. Pediatrics. 2016;138:e20161642. doi: 10.1542/peds.2016-1642.
    1. Satana C., Azevedo L., Cattuzzo M., Hill J., Andrade L., Prado W. Physical fitness and academic performance in youth: A systematic review. Scand. J. Med. Sci. Sports. 2016;27:579–603. doi: 10.1111/sms.12773.
    1. Smith J., Eather N., Morgan P., Plotnikoff R., Faigenbaum A., Lubans D. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014;44:1209–1223. doi: 10.1007/s40279-014-0196-4.
    1. Garcia-Hermoso A., Ramirez-Campillo R., Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 2019;49:1079–1094. doi: 10.1007/s40279-019-01098-6.
    1. Evaristo S., Moreira C., Lopes L., Oliveira A., Abreu S., Agostinis-Sobrinho C., Oliveira-Santos J., Povoas S., Santos R. Muscular fitness and cardiorespiratory fitness are associated with health-related quality of life: Results from labmed physical activity study. J. Exerc. Sci. Fit. 2019;17:55–61. doi: 10.1016/j.jesf.2019.01.002.
    1. Guthold R., Stevens G., Riley L., Bull F. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child. Adolesc. Health. 2020;4:23–35. doi: 10.1016/S2352-4642(19)30323-2.
    1. Woods C., Powell C., Saunders J., O’Brien W., Murphy M., Duff C., Farmer O., Johnston A., Connolly S., Belton S. The Children’s Sport Participation and Physical Activity Study 2018 (CSPPA) Department of Physical Education and Sport Sciences, University of Limerick; Limerick, Ireland: Sport Ireland, and Healthy Ireland; Dublin, Ireland: Sport Northern Ireland; Belfast, Northern Ireland: 2018.
    1. National Health Services . Part 5: Physical Activity, Statistics on Obesity, Physical Activity and Diet. National Health Services; London, UK: 2019.
    1. Verloigne M., Altenburg T., Chinapaw M., Chastin S., Cardon G., De Bourdeaudhuij I. Using a co-creational approach to develop, implement and evaluate an intervention to promote physical activity in adolescent girls from vocational and technical schools: A case control study. Int. J. Environ. Res. Public Health. 2017;14:862. doi: 10.3390/ijerph14080862.
    1. Harrington D., Davies M., Bodicoat D., Charles J., Chudasma Y., Gorley T., Khunti K., Rowlands A.V., Sherar L.B., Tudor-Edwards R., et al. A school-based intervention (‘Girls Active’) to increase physical activity levels among 11-to-14-year-old girls: Cluster RCT. Public Health Res. 2019;7 doi: 10.3310/phr07050.
    1. Robins L., Ling J., Sharma D., Dalimonte-Merckling D., Voskuil V., Resnicow K., Kaciroti N., Pfeiffer K. Intervention effects of “Girls on the Move” on increasing physical activity: A group randomized trial. Ann. Behav. Med. 2019;5:493–500. doi: 10.1093/abm/kay054.
    1. Love R., Adams J., van Sluijs E. Are school-based physical activity interventions effective an equitable? A meta-analysis of cluster randomized controlled trials with accelerometer-assessed activity. Obes. Rev. 2019;20:859–870. doi: 10.1111/obr.12823.
    1. Strugnell C., Turner K., Malakellis M., Hayward J., Foster C., Millar L., Allender S. Composition of objectively measured physical activity and sedentary behaviour participation across the school-day, influence of gender and weight status: Cross-sectional analyses among disadvantage Victorian school children. BMJ Open. 2016;6:e011478. doi: 10.1136/bmjopen-2016-011478.
    1. Ammar A., Brach M., Trabelsi K., Chtourou H., Boukhris O., Masmoudi L., Bouaziz B., Bentlage E., How D., Ahmed M., et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 International Online survey. Nutrients. 2020;12:1583. doi: 10.3390/nu12061583.
    1. Xiang M., Zhang Z., Kuwahara K. Impact of COVID-19 pandemic on children and adolescents’ lifestyle behaviour larger than expected. Prog Cardiovasc. Dis. 2020;63:531–532. doi: 10.1016/j.pcad.2020.04.013.
    1. Ng K., Cooper J., McHale F., Clifford J., Woods C. Barriers and facilitators to changes in adolescent physical activity during COVID-19. BMJ Open Sport Exerc. Med. 2020;6:e000919. doi: 10.1136/bmjsem-2020-000919.
    1. Cowley E., Wason P.M., Foweather L., Belton S., Thompson A., Thijssen D., Wagenmakers A. “Girls aren’t meant to exercise”: Perceived influences on physical activity among adolescent girls—The HERizon Project. Children. 2021;8:31. doi: 10.3390/children8010031.
    1. O’Cathain A., Thomas K., Drabble S., Rudolph A., Hewison J. What can qualitative research do for randomised controlled trials? A systematic mapping review. BMJ Open. 2013;3 doi: 10.1136/bmjopen-2013-002889.
    1. Corr M., McSharry J., Murtagh E.M. Adolescent Girls’ Perceptions of Physical Activity: A Systematic Review of Qualitative Studies. Am. J. Health Promot. 2019;33:806–819. doi: 10.1177/0890117118818747.
    1. Yungblut H., Schinke R., McGannon K. Views of adolescent female youth on physical activity during early adolescence. J. Sports Sci. Med. 2012;11:39–50.
    1. Owen M., Curry W., Kerner C., Newson L., Fairclough S. The effectiveness of school-based physical activity interventions for adolescent girls—A systematic review and meta-analysis. Prev. Med. 2017;105:237–249. doi: 10.1016/j.ypmed.2017.09.018.
    1. Pearson N., Braithwaite R., Biddle S. The effectiveness of interventions to increase physical activity among adolescent girls: A meta-analysis. Acad. Pediatrics. 2015;15:9–18. doi: 10.1016/j.acap.2014.08.009.
    1. Ryan R., Deci E. Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness. Guilford Press; New York, NY, USA: 2017.
    1. Ryan R., Deci E. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000;55:68–78. doi: 10.1037/0003-066X.55.1.68.
    1. Fin G., Baretta E., Moreno-Murcis J., Nodari R. Autonomy support, motivation, satisfaction and physical activity level in physical education class. Univ. Psychol. 2017;16:88–99. doi: 10.11144/Javeriana.upsy16-4.asms.
    1. Guagliano J., Kolt G., Rosenkranz R., Dzewaltowsko D. Does self-determined motivation interact with environmental contexts to influence moderate-to-vigorous physical activity during a girls’ youth sport camp? J. Sports Sci. 2019;37:2720–2725. doi: 10.1080/02640414.2019.1662537.
    1. Teixeira P., Carraca E., Markland D., Silva M., Ryan R. Exercise, physical activity, and self-determination theory: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012;9:78. doi: 10.1186/1479-5868-9-78.
    1. Ryan R., Deci E. Overview of self-determination theory: An organismic dialectical perspective. In: Deci E., Ryan R., editors. Handbook of Self-Determination Research. University of Rochester Press; New York, NY, USA: 2002. pp. 3–33.
    1. Sebire S., Jago R., Fox K., Edwards M., Thompson J. Testing a self-determination theory model of children’s physical activity motivation: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2013;10:111. doi: 10.1186/1479-5868-10-111.
    1. Maldonado E., Zamarripa J., Ruiz-Juan F., Pacheco R., Delgado M. Teacher autonomy support in physical education classes as a predictor of motivation and concentration in Mexican students. Front. Psychol. 2019;10:2834. doi: 10.3389/fpsyg.2019.02834.
    1. Stetler C., Legro M., Rycoft-Malone J., Bowman C., Curran G., Guihan M., Hagedorn H., Pineros S., Wallace C. Role of “external facilitation” in implementation of research findings a qualitative evaluation of facilitation experiences in the Veterans Health Administration. Implement. Sci. 2006;1:23. doi: 10.1186/1748-5908-1-23.
    1. Young D., Johnson C., Steckler A., Gittelsohn J., Saunders R., Saksvig B., Ribisl K.M., Lytle L.A., Mckenzie T.L. Data to action: Using formation research to develop intervention programs to increase physical activity in adolescent girls. Health Educ. Behav. 2006;33:97–111. doi: 10.1177/1090198105282444.
    1. Nutbeam D., Bauman A. Evaluation in a Nutshell: A Practical Guide to the Evaluation of Health Promotion Programs. Mcgraw-Hill Medical; Sydney, Australia: 2006.
    1. O’Cathain A., Croot L., Duncan E., Rousseau N., Sorn K., Turner K., Yardley L., Hoddinott P. Guidance on how to develop complex interventions to improve health and healthcare. BMJ Open. 2019;9:e029954. doi: 10.1136/bmjopen-2019-029954.
    1. Eldridge S., Chan C., Campbell M., Bons C., Hopewell S., Thabane L., Lancaster G. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. BMJ. 2016;355:i5239. doi: 10.1136/bmj.i5239.
    1. Hoffmann T.C., Glasziou P.P., Boutron I., Milne R., Perera R., Moher D., Altman D.G., Barbour V., Macdonald H., Johnston M., et al. Better reporting of intervention: Template for intervention description and replication (TIDieR) checklist and guide. Res. Methods Rep. 2014;348:g1687. doi: 10.1136/bmj.g1687.
    1. Teixeira P.J., Marques M.M., Silva M.N., Brunet J., Duda J.L., Haerens L., La Guardia J., Lindwall M., Lonsdale C., Markland D., et al. A classification of motivation and behaviour change techniques used in self-determination theory-based interventions in health contexts. Motiv. Sci. 2020;6:438–455. doi: 10.1037/mot0000172.
    1. Lubans D., Smith J., Peralta L., Plotnikoff R., Okely A., Salmon J., Hilland T. A school-based intervention incorporating smartphone technology to improve health-related fitness among adolescents: Rationale and study protocol for the NEAT and ATLAS 2.0 cluster randomised controlled trial and dissemination. BMJ Open. 2016;6:e010448. doi: 10.1136/bmjopen-2015-010448.
    1. Kennedy S., Smith J., Morgan P., Peralta L., Hilland T., Eather N., Dewar D. Implementing resistance training in secondary schools: A cluster randomized controlled trial. Med. Sci. Sports Exerc. 2018;50:62–73. doi: 10.1249/MSS.0000000000001410.
    1. Haase T., Pratschke J. The 2016 Pobal HP Deprivation Index for Small Areas (SA) 2017. [(accessed on 30 October 2020)]; Available online: .
    1. Ministry of Housing, Communities and Local Government The English Indices of Deprivation 2019. [(accessed on 30 October 2020)];2019 Available online: .
    1. WHO Growing up Unequal: Gender and Socioeconomic Difference in Young People’s Health and Wellbeing, Health Behaviour in School-Aged Children (HSBC) Study: International Report from 2013/2014 Survey. Volume 7. World Health Organisation; Geneva, Switzerland: 2016. pp. 1–276. Health Policy for Children and Adolescents.
    1. Booth M., Okely A., Chey T., Bauman A. The reliability and validity of the physical activity questions in the WHO health behaviour in schoolchildren (HBSC) survey: A population study. Br. J. Sports Med. 2001;35:261–267. doi: 10.1136/bjsm.35.4.263.
    1. McNamara E., Hudson Z., Taylor S. Measuring activity levels of young people: The validity of pedometer. Br. Med. Bull. 2010;95:121–137. doi: 10.1093/bmb/ldq016.
    1. Leger L., Mercier D., Gadoury C., Lambert J. The multistage 20 m shuttle run test for aerobic fitness. J. Sports Sci. 1988;6:93–101. doi: 10.1080/02640418808729800.
    1. Mayorga-Vega D., Aguilar-Soto P., Viciana J. Criterion-related validity of the 20-M shuttle run test for estimating cardiorespiratory fitness: A meta-analysis. J. Sports Sci. Med. 2015;14:536–547.
    1. Morrow J., Martin S., Jackson A. Reliability and validity of the FITNESSGRAM. Res. Q. Exerc. Sport. 2010;81:24–30. doi: 10.1080/02701367.2010.10599691.
    1. Castro-Pinero J., Ortega F., Artero E., Girela-Rejon M., Mora J., Sjostrom M., Ruiz J. Assessing muscular strength in youth: Usefulness of standing long jump as a general index of muscular fitness. J. Strength Cond. Res. 2010;24:1810–1817. doi: 10.1519/JSC.0b013e3181ddb03d.
    1. Marklands D., Tobin V. A modification to the Behavioural Regulation in Exercise questionnaire to include an assessment of amotivation. J. Sport Exerc. Psychol. 2003;29:191–196. doi: 10.1123/jsep.26.2.191.
    1. Wilson P., Rodgers W., Loitz C., Scime G. ‘It’s who I am… really!” The importance of integrated regulation in exercise contexts. J. Appl. Biobehav. Res. 2006;11:79–104. doi: 10.1111/j.1751-9861.2006.tb00021.x.
    1. Exercise Motivation Website The Behavioural Regulations in Exercise Questionnaire (BREQ), Bangor University. [(accessed on 5 November 2020)]; Available online: .
    1. Avalos L., Tylka T., Barcalow N. The Body Appreciation Scale: Development and psychometric evaluation. Body Image. 2005;2:285–297. doi: 10.1016/j.bodyim.2005.06.002.
    1. Walston K., Smith C. The development and validation of the Perceived Health Competence scale. Health Educ. Res. 1995;10:51–64.
    1. Hafekost K., Boterhoven de Haan K., Lawrence D., Sawyer M.G., Zubrick S.R. Validation of the Adolescent Self-Esteem Questionnaire. Telethon Kids Institute; Perth, WA, Australia: 2017. Technical Report.
    1. Glasgow R., Harden S., Gaglio B., Rabin B., Smith M.L., Porter G., Ory M.G., Estabrooks P.A. RE-AIM planning and evaluation framework: Adapting to new science and practice with a 20-year review. Front. Public Health. 2019;7:64. doi: 10.3389/fpubh.2019.00064.
    1. Braun V., Clarke V. Reflecting on reflexive thematic analysis. Qual. Res. Sport Exerc. Health. 2019;11:589–597. doi: 10.1080/2159676X.2019.1628806.
    1. Smith B., McGannon K. Developing rigor in qualitative research: Problems and opportunities within sport and exercise psychology. Int. Rev. Sport Exerc. Psychol. 2018;11:101–121. doi: 10.1080/1750984X.2017.1317357.
    1. LeBlanc A., Janssen I. Difference between self-reported and accelerometer measured moderate-to-vigorous physical activity in youth. Prev. Med. 2010;22:523–534. doi: 10.1123/pes.22.4.523.
    1. Corder K., van Sluijs E., Goodyer I., Ridgway C., Steele R., Bamber D., Dunn V., Griffin S., Ekelund U. Physical activity awareness of British adolescents. Arch. Pediatrics Adolesc. Med. 2011;165:603–609. doi: 10.1001/archpediatrics.2011.94.
    1. Shephard E. Limits to the measurement of habitual physical activity by questionnaires. Br. J. Sports Med. 2003;37:197–206. doi: 10.1136/bjsm.37.3.197.
    1. Sundar T., Londal K., Lagerlov P., Galvin K., Helseth S. Overweight adolescents’ views on physical activity—Experiences of participants in an internet-based intervention: A qualitative study. BMC Public Health. 2018;18:1–10.
    1. Mintjens S., Menting M., Daams J., van Poppel M., Roseboom T., Gemke R. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: A systematic review of longitudinal studies. Sports Med. 2018;48:2577–2605. doi: 10.1007/s40279-018-0974-5.
    1. Ruis J., Cavero-Redondo I., Ortega F., Welk G., Andersen L., Martinez-Vizcaino V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents: What level of fitness should raise a red flag? A systematic review and meta-analysis. Br. J. Sports Med. 2016;50:1451–1458.
    1. Neumark-Sztainer D., Friend S., Flattum C., Hannan P., Story M., Wauer K., Feldman S., Petrick C. New Moves—Preventing weight-related problems in adolescent girls. Am. J. Prev. Med. 2010;39:421–432. doi: 10.1016/j.amepre.2010.07.017.
    1. Plante T., Oppezzo M., Tran B., Dias L. Perceived fitness and exercise intensity can predict exercise enjoyment. J. Contemp. Athl. 2018;12:61–67.
    1. Coen S., Rosenberg M., Davidson J. “It’s gym, like g-y-m, not J-i-m”: Exploring the role of place in the gendering of physical activity. Soc. Sci. Med. 2018;196:29–36. doi: 10.1016/j.socscimed.2017.10.036.
    1. Slater A., Tiggemann M. Body image and disordered eating in adolescent girls and boys: A test of objectification theory. Sex Roles J. Res. 2010;63:42–49. doi: 10.1007/s11199-010-9794-2.
    1. Watson A., Eliott J., Mehta K. Perceived barriers and facilitators to participation in physical activity during the school lunch break for girls aged 12–13 years. Eur. Phys. Educ. Rev. 2015;21:257–271. doi: 10.1177/1356336X14567545.
    1. Thompson S., Evans E., Yli-Piipari S. An exposure-based intervention dismantles college-aged females’ barriers for resistance training: Project WONDER Training. Int. J. Phys. Educ. Fit. Sports. 2020;9:1–16. doi: 10.34256/ijpefs2041.
    1. Eisenmann J., Laurson K., Welk G. Aerobic fitness percentiles for U.S adolescents. Am. J. Prev. Med. 2011;41:106–110. doi: 10.1016/j.amepre.2011.07.005.
    1. Romain B.S., Maher M. Nor-referenced and criterion-referenced reliability of the push-up and modified pull up. Meas. Phys. Educ. Exerc. Sci. 2011;5:67–80. doi: 10.1207/S15327841MPEE0502_1.
    1. Anez E., Fornieles-Deu A., Fauquet-Ars J., Lopez-Guimera G., Punti-Vidal J., Sanchez-Carracedo D. Body image dissatisfaction, physical activity and screen-time in Spanish adolescents. J. Health Psychol. 2018;23:36–47. doi: 10.1177/1359105316664134.
    1. Annesi J.J., Trinity J., Mareno N., Walsh S.M. Association of a behaviorally based high school health education curriculum with increased exercise. J. Sch. Nurs. 2015;31:196–204. doi: 10.1177/1059840514536993.
    1. Mental Health Foundation Body Image in Childhood Report. [(accessed on 18 November 2020)]; Available online: .
    1. Health Research Board Activities of Irish Psychiatric Units and Hospitals. [(accessed on 18 November 2020)]; Available online: .
    1. Burnette A., Kwitowski M., Mazzeo S. “I don’t need people to tell me I’m pretty on social media”: A qualitative study of social media and body image in early adolescent girls. Body Image. 2017;23:114–125. doi: 10.1016/j.bodyim.2017.09.001.
    1. Watson P., McKinnon A., Santino N., Gunter R., Calleja M., Josse A. Integrating self-determination theory into a laboratory-based randomized controlled trial for adolescent girls with overweight and obesity: Theoretical underpinning and 12-week psychological outcomes. 2020. data unpublished.
    1. Sabiston C., Pila E., Vani M., Thogerson-Ntoumani C. Body image, physical activity, and sport: A scoping review. Psychol. Sport Exerc. 2019;42:48–57. doi: 10.1016/j.psychsport.2018.12.010.
    1. Wang L. Using the self-determination theory to understand Chinese adolescent leisure-time physical activity. Eur. J. Sport Sci. 2017;17:453–461. doi: 10.1080/17461391.2016.1276968.
    1. Corder K., Brown H., Schieff A., van Sluijs E.M.F. Feasibility study and pilot cluster randomised controlled trial of the GoActive intervention aiming to promote physical activity among adolescents: Outcomes and lessons learnt. BMJ Open. 2016;6:e012335. doi: 10.1136/bmjopen-2016-012335.
    1. Jenkinson K., Naughton G., Benson A. A stealth intervention: The GLAME (Girls! Lead! Achieve! Mentor! Activate!) and BLAST (Boys! Lead! Activate! Succeed Together!) school connectedness, peer leadership and physical activity transition program. Aust. J. Teach. Educ. 2018;43:3. doi: 10.14221/ajte.2018v43n1.3.
    1. Craike M.J., Symons C., Eime R.M., Payne W.R., Harvey J.T. A comparative study of factors influencing participation in sport and physical activity for metropolitan and rural female adolescents. Ann. Leis. Res. 2011;14:355–368. doi: 10.1080/11745398.2011.639405.
    1. Massie R., Smith B., Tolfrey K. Recommendations for recruiting and retaining adolescent girls in chronic exercise (training) research studies. Sports. 2015;3:219–325. doi: 10.3390/sports3030219.
    1. Carlin A., Murphy M., Nevill A., Gallagher A. Effects of a peer-led walking in ScHools intervention (the WISH study) on physical activity levels of adolescent girls: A cluster randomised pilot study. Trials. 2018;19:31. doi: 10.1186/s13063-017-2415-4.
    1. Barnes A., Plotnikoff R., Collins C., Morgan P. Feasibility and preliminary efficacy of the MADE4Life program: A pilot randomised controlled trial. J. Phys. Act. Health. 2015;12:1378–1393. doi: 10.1123/jpah.2014-0331.
    1. Farmer O., Cahill K., O’Brien W. Gaelic4Girls—The effectiveness of a 10-week multicomponent community sports-based physical activity intervention for 8 to 12 year old girls. Int. J. Environ. Res. Public Health. 2020;17:6928. doi: 10.3390/ijerph17186928.
    1. Owen M., Kerner C., Taylor S., Noonan R., Newson L., Kosteli M., Curry W., Fairclough S. The feasibility of a novel school peer-led mentoring model to improve the physical activity levels and sedentary time of adolescent girls: The Girls Peer Activity (G-PACT) Project. Child. 2018;5:67. doi: 10.3390/children5060067.
    1. McNamee J., Timken G., Coste S., Tompkins T., Peterson J. Adolescent girls’ physical activity, fitness and psychological well-being during a health club physical education approach. Eur. Phys. Educ. Rev. 2016;23:517–533. doi: 10.1177/1356336X16658882.
    1. Mendoza J., Baker K., Moreno M., Whitlock K., Abbey-Lambertz M., Waite A., Coburn T., Chow E. A Fitbit and Facebook mHealth intervention for promoting physical activity among adolescent and young adult childhood cancer survivors: A pilot study. Pediatric Blood Cancer. 2017;64:e26660. doi: 10.1002/pbc.26660.
    1. Nikitina S., Didino D., Baez M., Casati F. Feasibility of virtual table-based group exercise among older adults in Siberia: Findings from two pilot trials. JMIR mHealth uHealth. 2018;6:e40. doi: 10.2196/mhealth.7531.
    1. Palmer-Keenan D., Bair K. Research to support the development of a campaign to increase physical activity among low-income, urban, diverse, inactive teens. J. Nutr. Educ. Behav. 2019;51:703–710. doi: 10.1016/j.jneb.2019.02.001.
    1. Kang M., Mahar M., Morrow J. Issues in the assessment of physical activity in children. J. Phys. Educ. Recreat. Danc. 2016;87:35–43. doi: 10.1080/07303084.2016.1192943.
    1. Greenleaf A., Gibson D., Khattar C., Labrique A., Pariyo G. Building the evidence base for remote data collection in low- and middle-income countries: Comparing reliability and accuracy across survey modalities. Int. J. Med. Internet Res. 2017;19:e140. doi: 10.2196/jmir.7331.
    1. Jastrzebski Z., Bichowska M., Rompa P., Radiminski L., Dargiewicz R. Influence of different types of surfaces on the results of running speed tests in young soccer players. Cent. Eur. J. Sports Sci. Med. 2014;5:5–14.
    1. Sykes J. Capacity assessment in the workplace: A new step test. Occup. Health. 1995;47:20–22.
    1. Buono M., Roby J., Micale F., Sallis J., Shepard E. Validity and reliability of predicting maximum oxygen uptake via field tests in children and adolescents. Pediatric Exerc. Sci. 1991;3:250–255. doi: 10.1123/pes.3.3.250.
    1. Batista M.B., Romanzini L., Castro-Pinero J., Vaz Ronque E. Validity of field tests to estimate cardiorespiratory fitness in children and adolescents: A systematic review. Rev. Paul. Pediatr. 2017;35:222–233. doi: 10.1590/1984-0462/;2017;35;2;00002.
    1. Maggio A., Vuistiner P., Crettenand A., Tabin R., Martin X., Beghetti M., Farpour-Lambert N., Deriaz O. Adapting the “Chester step test” to predict peak oxygen uptake in children. Swiss Medial Wkly. 2017;147:14435.

Source: PubMed

3
Se inscrever