The systemic immune network in recent onset type 1 diabetes: central role of interleukin-1 receptor antagonist (DIATOR Trial)

Hubert Kolb, Kathrin Lückemeyer, Tim Heise, Christian Herder, Nanette C Schloot, Wolfgang Koenig, Lutz Heinemann, Stephan Martin, DIATOR Study Group, S Martin, H Kolb, W A Scherbaum, S Labrenz, M Lankisch, B Rose, G Willms, R Mies, P Adjomand, F Schmitten, W Stürmer, E Haak, T Haak, K Drynda, L Rose, M Jecht, S Wunderlich, H -G Ley, C Hasslacher, Hubert Kolb, Kathrin Lückemeyer, Tim Heise, Christian Herder, Nanette C Schloot, Wolfgang Koenig, Lutz Heinemann, Stephan Martin, DIATOR Study Group, S Martin, H Kolb, W A Scherbaum, S Labrenz, M Lankisch, B Rose, G Willms, R Mies, P Adjomand, F Schmitten, W Stürmer, E Haak, T Haak, K Drynda, L Rose, M Jecht, S Wunderlich, H -G Ley, C Hasslacher

Abstract

Background: The hypothesis was tested that the systemic immune milieu in recent-onset type 1 diabetes is associated with residual beta cell function and other metabolic patient characteristics.

Methods and findings: All patients (n = 89, 40% female) of the Diabetes and Atorvastatin (DIATOR) Trial were analyzed at recruitment, i.e. prior to receiving the study medication. Inclusion criteria were insulin dependent diabetes for 2 weeks to 3 months, age range 18-39 years, and islet cell autoantibodies. Blood samples were analyzed for 14 immune mediators by standard methods. Concentrations of all mediators correlated with at least one other mediator (p<0.05, Spearman correlation) giving rise to a network. Interleukin 1 receptor antagonist (IL1-RA) held a central position and was associated with both pro- and anti-inflammatory mediators. Further central elements were the pro-inflammatory mediators CRP and IL-6, the soluble adhesion molecules sICAM-1 and E-selectin, and MCP-4 which held a central position in the chemokine network. The two Th1-associated mediators IFNγ and IP-10 remained outside the network but correlated with each other. All correlations were positive (r = 0.25-0.72), i.e., high levels of pro-inflammatory mediators were accompanied by increased levels of anti-inflammatory mediators. IL-1RA was the only mediator associated with fasting and liquid mixed meal stimulated C-peptide concentrations (r = 0.31 and 0.24, p = 0.003 and 0.025, after adjustment for age, sex, BMI). There were associations between the immune mediator network and BMI (IL-1RA, CRP, IL-6, MCP-4, MIP-1ß) but few or no associations with HbA1c, insulin dose, lipid parameters, age or sex.

Conclusions: In patients with recent onset type 1 diabetes, systemic acute phase proteins, cytokines, chemokines and soluble adhesion molecules form a network. Among the few central elements IL-1RA has a dominant role. IL-1RA is associated with all other groups of mediators and is the only mediator which correlates (positively) with residual beta cell function.

Trial registration: ClinicalTrials.gov registration number: NCT00974740.

Conflict of interest statement

Competing Interests: T. Heise is and L. Heinemann was employed by Profil Institute of Metabolic Research which was contracted to conduct the trial. N.C. Schloot is employed by Lilly Deutschland GmbH. Co-author C. Herder is an Academic Editor with PlOS ONE. The trial was supported by an unrestricted grant from Pfizer Pharma GmbH, Berlin, Germany. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

Figures

Figure 1. Systemic immune mediator network in…
Figure 1. Systemic immune mediator network in patients with recent onset type 1 diabetes.
Shown are all significant correlations (p

Figure 2. Association of the immune mediator…

Figure 2. Association of the immune mediator network with metabolic and general characteristics.

Associations were…

Figure 2. Association of the immune mediator network with metabolic and general characteristics.
Associations were found primarily with core elements of the network, with a major role of IL-1RA. Peripheral elements of the network show only few correlations of systemic concentrations with metabolic parameters, and none with general characteristics. Blood lipid parameters show no association with immune mediators, with one exception. All correlations (Spearman rank) with p
Similar articles
Cited by
References
    1. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 91: 79–118. - PubMed
    1. Bending D, Zaccone P, Cooke A (2012) Inflammation and type one diabetes. Int. Immunol. 24: 339–346. - PubMed
    1. Eisenbarth GS (2012) Prevention of type 1A diabetes mellitus. Endocr.Pract. 18: 745–749. - PMC - PubMed
    1. Pfleger C, Mortensen HB, Hansen L, Herder C, Roep BO, et al. (2008) Association of IL-1ra and adiponectin with C-peptide and remission in patients with type 1 diabetes. Diabetes 57: 929–937. - PubMed
    1. Ansar W, Ghosh S (2013) C-reactive protein and the biology of disease. Immunol. Res. - PubMed
Show all 53 references
Publication types
Substances
Associated data
Grant support
The trial was supported by an unrestricted grant from Pfizer Pharma GmbH, Berlin, Germany. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 2. Association of the immune mediator…
Figure 2. Association of the immune mediator network with metabolic and general characteristics.
Associations were found primarily with core elements of the network, with a major role of IL-1RA. Peripheral elements of the network show only few correlations of systemic concentrations with metabolic parameters, and none with general characteristics. Blood lipid parameters show no association with immune mediators, with one exception. All correlations (Spearman rank) with p

References

    1. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 91: 79–118.
    1. Bending D, Zaccone P, Cooke A (2012) Inflammation and type one diabetes. Int. Immunol. 24: 339–346.
    1. Eisenbarth GS (2012) Prevention of type 1A diabetes mellitus. Endocr.Pract. 18: 745–749.
    1. Pfleger C, Mortensen HB, Hansen L, Herder C, Roep BO, et al. (2008) Association of IL-1ra and adiponectin with C-peptide and remission in patients with type 1 diabetes. Diabetes 57: 929–937.
    1. Ansar W, Ghosh S (2013) C-reactive protein and the biology of disease. Immunol. Res.
    1. Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54 Suppl 2S114–S124.
    1. Wen H, Ting JP, O’Neill LA (2012) A role for the NLRP3 inflammasome in metabolic diseases–did Warburg miss inflammation? Nat.Immunol. 13: 352–357.
    1. Mukaida N (2000) Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 72: 391–398.
    1. Panee J (2012) Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 60: 1–12.
    1. Xu F, Lv S, Chen Y, Song X, Jin Z, et al. (2012) Macrophage inflammatory protein-1beta and fibrinogen are synergistic predictive markers of prognosis of intermediate coronary artery lesions. Cardiology 121: 12–19.
    1. Iwamoto T, Okamoto H, Kobayashi S, Ikari K, Toyama Y, et al. (2007) A role of monocyte chemoattractant protein-4 (MCP-4)/CCL13 from chondrocytes in rheumatoid arthritis. FEBS J. 274: 4904–4912.
    1. Kalayci O, Sonna LA, Woodruff PG, Camargo CA Jr, Luster AD, et al. (2004) Monocyte chemotactic protein-4 (MCP-4; CCL-13): a biomarker of asthma. J. Asthma 41: 27–33.
    1. Yamashita U, Kuroda E (2002) Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit Rev. Immunol. 22: 105–114.
    1. Hammad H, Smits HH, Ratajczak C, Nithiananthan A, Wierenga EA, et al. (2003) Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22. Eur. Cytokine Netw. 14: 219–228.
    1. Rotondi M, Chiovato L, Romagnani S, Serio M, Romagnani P (2007) Role of chemokines in endocrine autoimmune diseases. Endocr. Rev. 28: 492–520.
    1. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7: 145–173.
    1. Lawson C, Wolf S (2009) ICAM-1 signaling in endothelial cells. Pharmacol. Rep. 61: 22–32.
    1. Goldberg RB (2009) Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metab 94: 3171–3182.
    1. Nadar S, Blann AD, Lip GY (2004) Endothelial dysfunction: methods of assessment and application to hypertension. Curr. Pharm. Des 10: 3591–3605.
    1. van den Engel NK, an HM, Martin S, Kolb H (2002) Oral DNA vaccination with a plasmid encoding soluble ICAM-1 modulates cytokine expression profiles in nonobese diabetic mice. J. Mol. Med.(Berl) 80: 301–308.
    1. Martin S, Heidenthal E, Schulte B, Rothe H, Kolb H (1998) Soluble forms of intercellular adhesion molecule-1 inhibit insulitis and onset of autoimmune diabetes. Diabetologia 41: 1298–1303.
    1. Kusterer K, Bojunga J, Enghofer M, Heidenthal E, Usadel KH, et al. (1998) Soluble ICAM-1 reduces leukocyte adhesion to vascular endothelium in ischemia-reperfusion injury in mice. Am. J. Physiol 275: G377–G380.
    1. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27: 519–550.
    1. Ohmori Y, Hamilton TA (1995) The interferon-stimulated response element and a kappa B site mediate synergistic induction of murine IP-10 gene transcription by IFN-gamma and TNF-alpha. J. Immunol. 154: 5235–5244.
    1. Hino R, Shimauchi T, Tokura Y (2005) Treatment with IFN-gamma increases serum levels of Th1 chemokines and decreases those of Th2 chemokines in patients with mycosis fungoides. J. Dermatol. Sci. 38: 189–195.
    1. Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol. Immunol. 38: 189–197.
    1. Lee SJ, Benveniste EN (1999) Adhesion molecule expression and regulation on cells of the central nervous system. J. Neuroimmunol. 98: 77–88.
    1. Jilma B, Blann AD, Stohlawetz P, Eichler HG, Kautzky-Willer A, et al. (2000) Dexamethasone lowers circulating E-selectin and ICAM-1 in healthy men. J. Lab Clin. Med. 135: 270–274.
    1. Kolb H, Mandrup-Poulsen T (2005) An immune origin of type 2 diabetes? Diabetologia 48: 1038–1050.
    1. a. Müller S, Martin S, Koenig W, Hanifi-Moghaddam P, Rathmann W, et al. (2002) Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors Diabetologia. 45: 805–812.
    1. Pfleger C, Kaas A, Hansen L, Alizadeh B, Hougaard P, et al. (2008) Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes. Clin. Immunol. 128: 57–65.
    1. Nam JL, Winthrop KL, van Vollenhoven RF, Pavelka K, Valesini G, et al. (2010) Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann. Rheum. Dis. 69: 976–986.
    1. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, et al. (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356: 1517–1526.
    1. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, et al. (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32: 1663–1668.
    1. Moran A, Bundy B, Becker DJ, Dimeglio LA, Gitelman SE, et al. (2013) Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381: 1905–1915.
    1. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11: 633–652.
    1. Kolb H, Eizirik DL (2012) Resistance to type 2 diabetes mellitus: a matter of hormesis? Nat.Rev.Endocrinol. 8: 183–192.
    1. Atkinson MA, Gianani R (2009) The pancreas in human type 1 diabetes: providing new answers to age-old questions. Curr. Opin. Endocrinol. Diabetes Obes. 16: 279–285.
    1. Foulis AK, Farquharson MA (1986) Aberrant expression of HLA-DR antigens by insulin-containing beta-cells in recent-onset type I diabetes mellitus. Diabetes 35: 1215–1224.
    1. Pham MN, Kolb H, Battelino T, Ludvigsson J, Pozzilli P, et al. (2013) Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes. Diabetologia 56: 1356–1363.
    1. Panagiotakos DB, Pitsavos C, Yannakoulia M, Chrysohoou C, Stefanadis C (2005) The implication of obesity and central fat on markers of chronic inflammation: The ATTICA study. Atherosclerosis 183: 308–315.
    1. Thorand B, Baumert J, Doring A, Herder C, Kolb H, et al. (2006) Sex differences in the relation of body composition to markers of inflammation. Atherosclerosis 184: 216–224.
    1. Cartier A, Bergeron J, Poirier P, Almeras N, Tremblay A, et al. (2009) Increased plasma interleukin-1 receptor antagonist levels in men with visceral obesity. Ann. Med. 41: 471–478.
    1. Loughrey B, McGinty A, Young I, McCance, Powell L (2012) Increased circulating CC chemokine levels in the metabolic syndrome are reduced by low dose atorvastatin treatment: evidence from a randomised controlled trial. Clin. Endocrinol. (Oxf).
    1. Hashimoto I, Wada J, Hida A, Baba M, Miyatake N, et al. (2006) Elevated serum monocyte chemoattractant protein-4 and chronic inflammation in overweight subjects. Obesity. (Silver.Spring) 14: 799–811.
    1. Carstensen M, Herder C, Kivimaki M, Jokela M, Roden M, et al. (2010) Accelerated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study. Diabetes 59: 1222–1227.
    1. Troseid M, Lappegard KT, Mollnes TE, Arnesen H, Seljeflot I (2005) Changes in serum levels of E-selectin correlate to improved glycaemic control and reduced obesity in subjects with the metabolic syndrome. Scand. J. Clin. Lab Invest 65: 283–290.
    1. El Amine M, Sohawon S, Lagneau L, Gaham N, Noordally S (2010) Plasma levels of ICAM-1 and circulating endothelial cells are elevated in unstable types 1 and 2 diabetes. Endocr. Regul. 44: 17–24.
    1. Salvioli S, Monti D, Lanzarini C, Conte M, Pirazzini C, et al. (2013) Immune system, cell senescence, aging and longevity - inflamm-aging reappraised. Curr. Pharm. Des 19: 1675–1679.
    1. Martin S, Herder C, Schloot NC, Koenig W, Heise T, et al. (2011) Residual beta cell function in newly diagnosed type 1 diabetes after treatment with atorvastatin: the Randomized DIATOR Trial. PLoS.One. 6: e17554.
    1. Herder C, Peltonen M, Koenig W, Sutfels K, Lindstrom J, et al. (2009) Anti-inflammatory effect of lifestyle changes in the Finnish Diabetes Prevention Study. Diabetologia 52: 433–442.
    1. Herder C, Baumert J, Thorand B, Koenig W, de Jager W, et al. (2006) Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984–2002. Diabetologia 49: 921–929.
    1. Greenbaum CJ, Mandrup-Poulsen T, McGee PF, Battelino T, Haastert B, et al. (2008) Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 31: 1966–1971.

Source: PubMed

3
Se inscrever