The sodium glucose cotransporter 2 inhibitor empagliflozin does not prolong QT interval in a thorough QT (TQT) study

Arne Ring, Tobias Brand, Sreeraj Macha, Kerstin Breithaupt-Groegler, Gudrun Simons, Beate Walter, Hans J Woerle, Uli C Broedl, Arne Ring, Tobias Brand, Sreeraj Macha, Kerstin Breithaupt-Groegler, Gudrun Simons, Beate Walter, Hans J Woerle, Uli C Broedl

Abstract

Background: Empagliflozin is a potent, selective sodium glucose cotransporter 2 (SGLT2) inhibitor in development as an oral antidiabetic treatment. This QT interval study assessed potential effects of empagliflozin on ventricular repolarisation and other electrocardiogram (ECG) parameters.

Methods: A randomised, placebo-controlled, single-dose, double-blind, five-period crossover study incorporating a novel double-placebo period design to reduce sample size, while maintaining full statistical power.

Treatments: single empagliflozin doses of 25 mg (therapeutic) and 200 mg (supratherapeutic), matching placebo and open-label moxifloxacin 400 mg (positive control). Triplicate 12-lead ECGs of 10 second duration were recorded at baseline and during the first 24 hours after dosing. The primary endpoint was mean change from baseline (MCfB) in the population heart rate-corrected QT interval (QTcN) between 1-4 hours after dosing.

Results: Thirty volunteers (16 male, 14 female, mean [range] age: 34.5 [18-52] years) were randomised. The placebo-corrected MCfB in QTcN 1-4 hours after dosing was 0.6 (90% CI: -0.7, 1.9) ms and -0.2 (-1.4, 0.9) ms for empagliflozin 25 mg and 200 mg, respectively, below the ICH E14 defined threshold of regulatory concern 10 ms. Assay sensitivity was confirmed by a placebo-corrected MCfB in QTcN 2-4 hours post-dose of 12.4 (10.7, 14.1) ms with moxifloxacin 400 mg. Empagliflozin tolerability was good for all volunteers; 23.3% experienced adverse events (AEs) with empagliflozin and 27.6% with placebo. The most frequent AE was nasopharyngitis.

Conclusions/interpretation: Single doses of empagliflozin 25 mg and 200 mg were not associated with QTcN prolongation and were well tolerated in healthy volunteers.

Trial registration: ClinicalTrials.gov: NCT01195675.

Figures

Figure 1
Figure 1
Patient flow (five-period crossover design).
Figure 2
Figure 2
Placebo-corrected QTcN CfB (A) and placebo-corrected heart rate CfB (B). Data are adjusted means and 90% confidence intervals (CIs) after administration of empagliflozin 25 mg, or 200 mg, or moxifloxacin 400 mg. Data from the full analysis set analysed: placebo (n=29); 25 mg empagliflozin group (n=28); 200 mg empagliflozin group (n=30); and 400 mg moxifloxacin group (n=29). CfB, change from baseline; HR, heart rate; QTcN, population heart rate-corrected QT interval.
Figure 3
Figure 3
Empagliflozin exposure-response relationships for placebo-corrected QTcN (A) and heart rate (B) changes from baseline. Placebo-corrected changes from baseline versus plasma concentrations of empagliflozin for empagliflozin 25 mg and empagliflozin 200 mg treatment groups. HR, heart rate; QTcN, population heart rate-corrected QT interval. Data from the full analysis set.

References

    1. Mather A, Pollock C. Glucose handling by the kidney. Kidney Int. 2011;79:S1–S6.
    1. DeFronzo RA, Davidson JA, Del Prato S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab. 2012;14:5–14. doi: 10.1111/j.1463-1326.2011.01511.x.
    1. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: A randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:2223–2233. doi: 10.1016/S0140-6736(10)60407-2.
    1. Schwartz SL, Akinlade B, Klasen S, Kowalski D, Zhang W, Wilpshaar W. Safety, pharmacokinetic, and pharmacodynamic profiles of ipragliflozin (ASP1941), a novel and selective inhibitor of sodium-dependent glucose co-transporter 2, in patients with type 2 diabetes mellitus. Diabetes Technol Ther. 2011;13:1219–1227. doi: 10.1089/dia.2011.0012.
    1. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, Capuano G, Canovatchel W. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35:1232–1238. doi: 10.2337/dc11-1926.
    1. Ferrannini E, Seman L, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ. A phase IIb, randomised, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab. 2013. [Epub ahead of print]
    1. Katsiki N, Papanas N, Mikhailidis DP. Dapagliflozin: More than just another oral glucose-lowering agent? Expert Opin Investig Drugs. 2010;19:1581–1589. doi: 10.1517/13543784.2011.539558.
    1. Rosenstock J, Jelaska A, Seman L, Pinnetti S, Hantel S, Woerle HJ. Efficacy and safety of BI 10773, a new sodium glucose cotransporter (SGLT-2) inhibitor, in type 2 diabetes inadequately controlled on metformin. [abstract] Diabetes. 2011;60:A271. [989-P]
    1. Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp D, Bakker M, Klein T, Eickelman P. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14:83–90. doi: 10.1111/j.1463-1326.2011.01517.x.
    1. Seman L, Macha S, Nehmiz G, Simons G, Ren B, Pinnetti S, Woerle HJ, Dugi KA. Empagliflozin (BI 10773), a potent and selective SGLT-2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clinical Pharm in Drug Dev. 2013.
    1. Cubeddu LX. QT prolongation and fatal arrhythmias: A review of clinical implications and effects of drugs. Am J Ther. 2003;10:452–457. doi: 10.1097/00045391-200311000-00013.
    1. European Medicines Agency. ICH topic E14: The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs: Step 5: Note for guidance on the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for nonantiarrhythmic drugs. 2005. November 2005, CHMP/ICH/2/04. Available from . Accessed 26 March 2012.
    1. van Noord C, Eijgelsheim M, Stricker BH. Drug- and non-drug-associated QT interval prolongation. Br J Clin Pharmacol. 2010;70:16–23. doi: 10.1111/j.1365-2125.2010.03660.x.
    1. Preis SR, Hwang SJ, Coady S, Pencina MJ, D’Agostino RB Sr, Savage PJ, Levy D, Fox CS. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119(13):1728–1735. doi: 10.1161/CIRCULATIONAHA.108.829176.
    1. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di AE, Ingelsson E, Lawlor DA, Selvin E, Stampfer M. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9.
    1. DeSouza CV, Fonseca V. Therapeutic targets to reduce cardiovascular disease in type 2 diabetes. Nat Rev Drug Discov. 2009;8:361–367. doi: 10.1038/nrd2872.
    1. DeSouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33:1389–1394. doi: 10.2337/dc09-2082.
    1. WHO. World Health Organization Diabetes factsheet. 2011. Available from . Accessed 26 March 2012.
    1. DeFronzo RA. Overview of newer agents: Where treatment is going. Am J Med. 2010;123:S38–S48. doi: 10.1016/j.amjmed.2009.12.008.
    1. Ovalle F. Cardiovascular implications of antihyperglycemic therapies for type 2 diabetes. Clin Ther. 2011;33:393–407. doi: 10.1016/j.clinthera.2011.04.006.
    1. Chanter DO. More power for your money. Prague: Drug Information Association Cardiac Safety Conference; 2007.
    1. Ring A, Walter B, Larbalestier A, Chanter D. An efficient cross-over design for thorough QT studies. GMS Med Inform Biom Epidemiol. 2010;6:Doc05.
    1. Julious SA. Seven useful designs. Pharm Stat. 2012;11:24–31. doi: 10.1002/pst.485.
    1. Food and Drug Administration. International conference on harmonisation; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Fed Regist. 2005;70:61134–61135.
    1. Bloomfield DM, Kost JT, Ghosh K, Hreniuk D, Hickey LA, Guitierrez MJ, Gottesdiener K, Wagner JA. The effect of moxifloxacin on QTc and implications for the design of thorough QT studies. Clin Pharmacol Ther. 2008;84:475–480. doi: 10.1038/clpt.2008.33.
    1. Morganroth J, Ilson BE, Shaddinger BC, Dabiri GA, Patel BR, Boyle DA, Sethuraman VS, Montague TH. Evaluation of vardenafil and sildenafil on cardiac repolarization. Am J Cardiol. 2004;93:1378–83. doi: 10.1016/j.amjcard.2004.02.034. A6.
    1. Extramiana F, Maison-Blanche P, Cabanis MJ, Ortemann-Renon C, Beaufils P, Leenhardt A. Clinical assessment of drug-induced QT prolongation in association with heart rate changes. Clin Pharmacol Ther. 2005;77:247–258. doi: 10.1016/j.clpt.2004.10.016.
    1. Demolis JL, Kubitza D, Tenneze L, Funck-Brentano C. Effect of a single oral dose of moxifloxacin (400 mg and 800 mg) on ventricular repolarization in healthy subjects. Clin Pharmacol Ther. 2000;68:658–666. doi: 10.1067/mcp.2000.111482.
    1. Ring A. Statistical models for heart rate correction of the QT interval. Stat Med. 2010;29:786–796. doi: 10.1002/sim.3791.
    1. Zhang X, Silkey M, Schumacher M, Wang L, Raval H, Caulfield JP. Period correction of the QTc of moxifloxacin with multiple predose baseline ECGs is the least variable of 4 methods tested. J Clin Pharmacol. 2009;49:534–539. doi: 10.1177/0091270008330158.
    1. Natekar M, Hingorani P, Gupta P, Karnad DR, Kothari S, de VM, Zumbrunnen T, Narula D. Effect of number of replicate electrocardiograms recorded at each time point in a thorough QT study on sample size and study cost. J Clin Pharmacol. 2011;51:908–914. doi: 10.1177/0091270010376962.
    1. Zhang J. Testing for positive control activity in a thorough QTc study. J Biopharm Stat. 2008;18:517–528. doi: 10.1080/10543400801995478.
    1. Anand SP, Murray SC, Koch GG. Sample size calculations for crossover thorough QT studies: satisfaction of regulatory threshold and assay sensitivity. J Biopharm Stat. 2010;20:587–603.
    1. Meng Z, Kringle R, Chen X, Zhao PL. Sample size calculation for thorough QT/QTc study considering various factors related to multiple time points. J Biopharm Stat. 2010;20:563–577. doi: 10.1080/10543400903582000.
    1. Zhang L, Dmitrienko A, Luta G. Sample size calculations in thorough QT studies. J Biopharm Stat. 2008;18:468–482. doi: 10.1080/10543400801993002.
    1. Schall R, Ring A. Mixed models for data from thorough QT studies: Part 1. Assessment of marginal QT prolongation. Pharm Stat. 2011;10:265–276. doi: 10.1002/pst.463.
    1. Julious SA. Why do we use pooled variance analysis of variance? Pharm Stat. 2005;4:3–5. doi: 10.1002/pst.155.
    1. Garnett CE, Beasley N, Bhattaram VA, Jadhav PR, Madabushi R, Stockbridge N, Tornoe CW, Wang Y, Zhu H, Gobburu JV. Concentration-QT relationships play a key role in the evaluation of proarrhythmic risk during regulatory review. J Clin Pharmacol. 2008;48:13–18. doi: 10.1177/0091270007307881.
    1. Kenward MG, Roger JH. The use of baseline covariates in crossover studies. Biostatistics. 2010;11:1–17. doi: 10.1093/biostatistics/kxp046.
    1. Schall R. Mixed models for data from thorough QT studies: Part 2. One-step assessment of conditional QT prolongation. Pharm Stat. 2011;10:293–301. doi: 10.1002/pst.465.
    1. Zhang L, Smith BP. Sex differences in QT interval variability and implication on sample size of thorough QT study. Drug Inf J. 2007;41:619–627.
    1. Hutmacher MM, Chapel S, Agin MA, Fleishaker JC, Lalonde RL. Performance characteristics for some typical QT study designs under the ICH E-14 guidance. J Clin Pharmacol. 2008;48:215–214. doi: 10.1177/0091270007311921.
    1. Patterson SD, Jones B, Zariffa N. Modeling and interpreting QTc prolongation in clinical pharmacology studies. Drug Inf J. 2005;39:437–445. doi: 10.1177/009286150503900410.
    1. Shah RR. The significance of QT interval in drug development. Br J Clin Pharmacol. 2002;54:188–202. doi: 10.1046/j.1365-2125.2002.01627.x.
    1. Shah RR. Drug-induced QT interval prolongation: does ethnicity of the thorough QT study population matter? Br J Clin Pharmacol. 2013;75:347–358. doi: 10.1111/j.1365-2125.2012.04415.x.
    1. Zeltser D, Justo D, Halkin A, Prokhorov V, Heller K, Viskin S. Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine (Baltimore) 2003;82:282–290.
    1. Julious SA. Sample sizes for clinical trials with normal data. Stat Med. 2004;23:1921–1986. doi: 10.1002/sim.1783.
    1. Seman L, Macha S, Jones P, Marquart A, Port A, Pinnetti S, Heise T, Dugi K. Safety and tolerability of BI 10773, a sodium-glucose co-transporter (SGLT-2) inhibitor, following 8-days treatment in patients with type 2 diabetes [abstract] Diabetes. 2010;59:A156. [571-P]
    1. Heise T, Seewaldt-Becker E, Macha S, Hantel S, Pinnetti S, Seman L, Woerle HJ. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab. 2013. [Epub ahead of print]

Source: PubMed

3
Se inscrever