Normal right and left ventricular volumes prospectively obtained from cardiovascular magnetic resonance in awake, healthy, 0- 12 year old children

Laura J Olivieri, Jiji Jiang, Karin Hamann, Yue-Hin Loke, Adrienne Campbell-Washburn, Hui Xue, Robert McCarter, Russell Cross, Laura J Olivieri, Jiji Jiang, Karin Hamann, Yue-Hin Loke, Adrienne Campbell-Washburn, Hui Xue, Robert McCarter, Russell Cross

Abstract

Introduction: Pediatric z scores are necessary to describe size and structure of the heart in growing children, however, development of an accurate z score calculator requires robust normal datasets, which are difficult to obtain with cardiovascular magnetic resonance (CMR) in children. Motion-corrected (MOCO) cines from re-binned, reconstructed real-time cine offer a free-breathing, rapid acquisition resulting in cines with high spatial and temporal resolution. In combination with child-friendly positioning and entertainment, MOCO cine technique allows for rapid cine volumetry in patients of all ages without sedation. Thus, our aim was to prospectively enroll normal infants and children birth-12 years for creation and validation of a z score calculator describing normal right ventricular (RV) and left ventricular (LV) size.

Methods: With IRB approval and consent/assent, 149 normal children successfully underwent a brief noncontrast CMR on a 1.5 T scanner including MOCO cines in the short axis, and RV and LV volumes were measured. 20% of scans were re-measured for interobserver variability analyses. A general linear modeling (GLM) framework was employed to identify and properly represent the relationship between CMR-based assessments and anthropometric data. Scatter plots of model fit and Akaike's information criteria (AIC) results were used to guide the choice among alternative models.

Results: A total of 149 subjects aged 22 days-12 years (average 5.1 ± 3.6 years), with body surface area (BSA) range 0.21-1.63 m2 (average 0.8 ± 0.35 m2) were scanned. All ICC values were > 95%, reflecting excellent agreement between raters. The model that provided the best fit of volume measure to the data included BSA with higher order effects and gender as independent variables. Compared with earlier z score models, there is important additional growth inflection in early toddlerhood with similar z score prediction in later childhood.

Conclusions: Free-breathing, MOCO cines allow for accurate, reliable RV and LV volumetry in a wide range of infants and children while awake. Equations predicting fit between LV and RV normal values and BSA are reported herein for purposes of creating z scores.

Trial registration: clinicaltrials.gov NCT02892136, Registered 7/21/2016.

Keywords: Motion correction cine; Pediatric cardiology; Volumetry; Z scores.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Example of positioning approach for a infant subjects using the “feed and bundle” approach, and b young children using the parents’ arms encircling them underneath the coil
Fig. 2
Fig. 2
Contours of the right ventricle (RV) and left ventricle (LV) at end-diastole (left panel) and end-systole (right panel) demonstrating contouring strategy. Papillary muscle and trabeculations are included in the blood pool by tracing the blood pool-endocardial border of each ventricle in both phases
Fig. 3
Fig. 3
Flow diagram of enrollment for pediatric normal data project, noting exclusions where appropriate
Fig. 4
Fig. 4
Bland-Altman analyses for each of the 5 measured endpoints (LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV mass, RV end-diastolic volume (RVEDV), RV end-systolic volume (RVESV) for each of the 3 observers (LO, RC, YL)
Fig. 5
Fig. 5
Scatterplots of LVEDV, LVESV, LV mass, LVEF and LV cardiac output (LVCO) with sample best fit lines, and Z = + 2, Z = -2 lines for the enrolled pediatric normal cohort
Fig. 6
Fig. 6
Scatterplots of RVEDV, RVESV, RVEF and RV cardiac output (RVCO) with sample best fit lines, and Z = + 2, Z = -2 lines for the enrolled pediatric normal cohort
Fig. 7
Fig. 7
Graph depicting the relationship between the previously published Buechel z score equations (mean, +2SD, − 2SD) and our z score equations (mean, +2SD, − 2SD) for LVEDV vs. body surface area (BSA) and RVEDV vs. BSA

References

    1. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51. doi: 10.1186/1532-429X-15-51.
    1. Pfaffenberger S, Bartko P, Graf A, Pernicka E, Babayev J, Lolic E, et al. Size matters! Impact of age, sex, height, and weight on the normal heart size. Circ Cardiovasc Imaging. 2013;6:1073–1079. doi: 10.1161/CIRCIMAGING.113.000690.
    1. Daubeney PE, Blackstone EH, Weintraub RG, Slavik Z, Scanlon J, Webber SA. Relationship of the dimension of cardiac structures to body size: an echocardiographic study in normal infants and children. Cardiol Young. 1999;9:402–410. doi: 10.1017/S1047951100005217.
    1. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64:507–512. doi: 10.1016/0002-9149(89)90430-X.
    1. Pettersen MD, Du W, Skeens ME, Humes RA. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr. 2008;21:922–934. doi: 10.1016/j.echo.2008.02.006.
    1. Colan S. Normal echocardiographic values for cardiovascular structures. In: Cohen M, Lai W, Geva T, Mertens L, editors. Echocardiogr Pediatr Congenit Heart Dis. West Sussex: Wiley-Blackwell; 2009. pp. 765–785.
    1. Foster BJ, Mackie AS, Mitsnefes M, Ali H, Mamber S, Colan SD. A novel method of expressing left ventricular mass relative to body size in children. Circulation. 2008;117:2769–2775. doi: 10.1161/CIRCULATIONAHA.107.741157.
    1. Kobayashi T, Fuse S, Sakamoto N, Mikami M, Ogawa S, Hamaoka K, et al. A New Z Score Curve of the Coronary Arterial Internal Diameter Using the Lambda-Mu-Sigma Method in a Pediatric Population. J Am Soc Echocardiogr. 2016;29:794–801.e29. doi: 10.1016/j.echo.2016.03.017.
    1. Olivieri L, Arling B, Friberg M, Sable C. Coronary artery Z score regression equations and calculators derived from a large heterogeneous population of children undergoing echocardiography. J Am Soc Echocardiogr. 2009;22:159–164. doi: 10.1016/j.echo.2008.11.003.
    1. Krishnan A, Pike JI, McCarter R, Fulgium AL, Wilson E, Donofrio MT, et al. Predictive models for Normal fetal cardiac structures. J Am Soc Echocardiogr. 2016;29:1197–1206. doi: 10.1016/j.echo.2016.08.019.
    1. Lopez L, Colan S, Stylianou M, et al. Relationship of Echocardiographic Z Scores Adjusted for Body Surface Area to Age, Sex, Race, and Ethnicity: The Pediatric Heart Network Normal Echocardiogram Database. Circ Cardiovasc Imaging. 2017;10(11):e006979. 10.1161/CIRCIMAGING.117.006979
    1. Knobel Z, Kellenberger CJ, Kaiser T, Albisetti M, Bergsträsser E, Buechel ERV. Geometry and dimensions of the pulmonary artery bifurcation in children and adolescents: assessment in vivo by contrast-enhanced MR-angiography. Int J Card Imaging. 2011;27:385–396. doi: 10.1007/s10554-010-9672-6.
    1. Kaiser T, Kellenberger CJ, Albisetti M, Bergsträsser E, Valsangiacomo Buechel ER. Normal values for aortic diameters in children and adolescents--assessment in vivo by contrast-enhanced CMR-angiography. J Cardiovasc Magn Reson. 2008;10:56. doi: 10.1186/1532-429X-10-56.
    1. Burman ED, Keegan J, Kilner PJ. Pulmonary artery diameters, cross sectional areas and area changes measured by cine cardiovascular magnetic resonance in healthy volunteers. J Cardiovasc Magn Reson. 2016;18:12. doi: 10.1186/s12968-016-0230-9.
    1. Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:19. doi: 10.1186/1532-429X-11-19.
    1. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:29. doi: 10.1186/s12968-015-0111-7.
    1. Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, et al. Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging. 2010;3:65–76. doi: 10.1161/CIRCIMAGING.109.859074.
    1. van der Ven JPG, Sadighy Z, Valsangiacomo Buechel ER, Sarikouch S, Robbers-Visser D, Kellenberger CJ, et al. Multicentre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0–18 years. Eur Heart J Cardiovasc Imaging. 2019; Available from: . Cited 2019 Sep 26.
    1. Cross R, Olivieri L, O’Brien K, Kellman P, Xue H, Hansen M. Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging. J Cardiovasc Magn Reson. 2016;18:10. doi: 10.1186/s12968-016-0231-8.
    1. Merlocco A, Olivieri L, Kellman P, Xue H, Cross R. Improved Workflow for Quantification of Right Ventricular Volumes Using Free-Breathing Motion Corrected Cine Imaging. Pediatr Cardiol. 2019;40(1):79–88. 10.1007/s00246-018-1963-z
    1. Xue H, Kellman P, Larocca G, Arai AE, Hansen MS. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson. 2013;15:102. doi: 10.1186/1532-429X-15-102.
    1. Xue H, Inati S, Sørensen TS, Kellman P, Hansen MS. Distributed MRI reconstruction using gadgetron-based cloud computing. Magn Reson Med. 2014.
    1. Steeden JA, Kowalik GT, Tann O, Hughes M, Mortensen KH, Muthurangu V. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing. J Cardiovasc Magn Reson. 2018;20:79. doi: 10.1186/s12968-018-0500-9.
    1. Papavassiliu T, Kühl HP, Schröder M, Süselbeck T, Bondarenko O, Böhm CK, et al. Effect of Endocardial Trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology. 2005;236:57–64. doi: 10.1148/radiol.2353040601.
    1. Campens L, Demulier L, De Groote K, Vandekerckhove K, De Wolf D, Roman MJ, et al. Reference values for echocardiographic assessment of the diameter of the aortic root and ascending aorta spanning all age categories. Am J Cardiol. 2014;114:914–920. doi: 10.1016/j.amjcard.2014.06.024.
    1. Cantinotti M, Scalese M, Murzi B, Assanta N, Spadoni I, Festa P, et al. Echocardiographic nomograms for ventricular, valvular and arterial dimensions in caucasian children with a special focus on neonates, infants and toddlers. J Am Soc Echocardiogr. 2014;27:179–191.e2. doi: 10.1016/j.echo.2013.10.001.
    1. Choudhry S, Salter A, Cunningham TW, Levy PT, Nguyen HH, Wallendorf M, et al. Normative Left Ventricular M-Mode Echocardiographic Values in Preterm Infants up to 2 kg. J Am Soc Echocardiogr. 2017;30:781–789.e4. doi: 10.1016/j.echo.2017.04.010.
    1. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson. 2013;15 Available from: . Cited 2019 Sep 26.
    1. Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M, et al. Cardiovascular function in multi-ethnic study of atherosclerosis: Normal values by age, sex, and ethnicity. Am J Roentgenol. 2006;186:S357–S365. doi: 10.2214/AJR.04.1868.
    1. Hudsmith L, Petersen S, Francis J, Robson M, Neubauer S. Normal Human Left and Right Ventricular and Left Atrial Dimensions Using Steady State Free Precession Magnetic Resonance Imaging. J Cardiovasc Magn Reson. 2005;7:775–782. doi: 10.1080/10976640500295516.
    1. Claessen G, Claus P, Delcroix M, Bogaert J, La Gerche A, Heidbuchel H. Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study. Am J Physiol Heart Circ Physiol. 2014;306:H816–H824. doi: 10.1152/ajpheart.00752.2013.
    1. Neilan TG, Pradhan AD, King ME, Weyman AE. Derivation of a size-independent variable for scaling of cardiac dimensions in a normal paediatric population. Eur J Echocardiogr. 2009;10:50–55. doi: 10.1093/ejechocard/jen110.
    1. Foster BJ, Khoury PR, Kimball TR, Mackie AS, Mitsnefes M. New Reference Centiles for Left Ventricular Mass Relative to Lean Body Mass in Children. J Am Soc Echocardiogr. 2016;29:441–447.e2. doi: 10.1016/j.echo.2015.12.011.
    1. Cantinotti M, Scalese M, Molinaro S, Murzi B, Passino C. Limitations of current echocardiographic nomograms for left ventricular, valvular, and arterial dimensions in children: a critical review. J Am Soc Echocardiogr. 2012;25:142–152. doi: 10.1016/j.echo.2011.10.016.
    1. Quezada E, Lapidus J, Shaughnessy R, Chen Z, Silberbach M. Aortic dimensions in turner syndrome. Am J Med Genet A. 2015;167A:2527–2532. doi: 10.1002/ajmg.a.37208.

Source: PubMed

3
Se inscrever