Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions

Sonja Buvinic, Julián Balanta-Melo, Kornelius Kupczik, Walter Vásquez, Carolina Beato, Viviana Toro-Ibacache, Sonja Buvinic, Julián Balanta-Melo, Kornelius Kupczik, Walter Vásquez, Carolina Beato, Viviana Toro-Ibacache

Abstract

The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.

Keywords: bone biomechanical; craniofacial bones; masticatory muscles; musculoskeletal system; paracrine communication.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The handling editor declared a past co-authorship with the authors SB, JB-M.

Copyright © 2021 Buvinic, Balanta-Melo, Kupczik, Vásquez, Beato and Toro-Ibacache.

Figures

Figure 1
Figure 1
Particularities of masticatory muscles with respect to that of the trunk and limbs. Differences between trunk and limb muscles (left panels) and masticatory muscles (right panels) are depicted, as indicated at the top of the figure. (A) While the trunk and limb muscles form from the mesoderm-derived somites, the masticatory muscles are derived from mesodermic-derived cells at the first pharyngeal arch (origin sites colored in dark-brown). (B) The trunk and limb muscles express myosin heavy chains (MyHC) type I, IIA, or IIX. Each myofiber expresses a single type of MyHC, and type II fast-fibers have a larger diameter than type I slow-fibers. In masticatory muscles, apart from the classic MyHC types (I, IIA, IIX), the neonatal and cardiac (atrial) types are expressed. There is a large proportion of “hybrid” fibers, simultaneously expressing several MyHCs types. This means that the fibers can have great force-generating properties, with high resistance to fatigue. Additionally, in masticatory muscles, type I fibers are larger in diameter than type II. (C) In masticatory muscles, type I myofibers are even 10-fold slower than in trunk and limbs. Moreover, the velocity of shortening of type II myofibers is faster in masticatory muscles as compared to the trunk and limbs ones.
Figure 2
Figure 2
Particularities of the mandibular bone with respect to the trunk and limb bones. Differences between long bones of the appendicular skeleton (left panels) and mandible (right panels) are depicted, as indicated at the top of the figure. (A) While long bones derive from embryonic mesoderm, mandibular bone derives from cells of the 1st pharyngeal arch coming from the neural crest (origin sites colored in dark-brown). (B) Mandible is the only structure supporting the four main mineralized tissues: bone, cartilage, enamel, and dentin. Instead, long bones only have bone and cartilage. Because jaws support the teeth, they are exposed to additional developmental processes until adulthood and undergo pathologies that are not present in other bones. (C) While long bones contain both red and yellow bone marrow, the jaws mainly have red bone marrow. (D) Mesenchymal stem cells (MSC) derived from mandible have better osteogenic potential than derived from long bones; they have a higher proliferation rate and mineralization, with an increased regeneration capacity. OB: osteoblasts.
Figure 3
Figure 3
Schematic representation of the forces acting on the mandible during static biting and the resulting bone deformation patterns described in the literature. Image built using a three-dimensional reconstruction of CT-data from an individual in Toro-Ibacache et al. (36).
Figure 4
Figure 4
Hypothetical model of cross-communication between muscles and bones at the murine masticatory system. Here we relate in a graphic outline the main changes described in rat/mouse models subjected to a reduction (Soft Diet) or an increase (Hard Diet) in diet consistency, as well as those described after paralysis of the masseter muscle by injection of botulinum toxin type A (BoNTA). In the hypofunctional models (Soft-diet, BoNTA), an increase in interleukin-6 (IL-6) expression and release, as well as a reduction in insulin-like growth factor 1 (IGF-1) in masseter muscle could mediate the muscle atrophy and bone loss, together with the reduced mechanical stimulation. In addition, the increased levels of RANK ligand (RANKL) in mandibular condyle after BoNTA injection could mediate both the osteoclastogenesis leading to bone loss and the muscle atrophy observed. On the other hand, consumption of a hard diet evokes an increase in IGF-1 expression in mandibular osteocytes, which could act as an anabolic factor in muscle and bone, leading to increased muscle mass and bone formation described in this model. Technical information: 3D rendering of murine skull, mandible, and masseter muscles corresponds to PTA contrast-enhanced high-resolution microCT data taken at the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany). Skull and mandible segmented with Avizo 9.2 (Thermo Scientific™, USA); masseter muscles segmented with the Biomedical Segmentation App (Biomedisa) (128). 3D rendering of hard and soft tissues performed with DRAGONFLY 4.1 (Object Research Systems, Canada). Image built using data from an individual in Balanta-Melo et al. (129).

References

    1. Bajaj D, Allerton BM, Kirby JT, Miller F, Rowe DA, Pohlig RT, et al. . Muscle volume is related to trabecular and cortical bone architecture in typically developing children. Bone (2015) 81:217–27. 10.1016/j.bone.2015.07.014
    1. Laurent MR, Dubois V, Claessens F, Verschueren SM, Vanderschueren D, Gielen E, et al. . Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol (2016) 432:14–36. 10.1016/j.mce.2015.10.017
    1. Maurel DB, Jahn K, Lara-Castillo N. Muscle-Bone Crosstalk: Emerging Opportunities for Novel Therapeutic Approaches to Treat Musculoskeletal Pathologies. Biomedicines (2017) 5(62):1–18. 10.3390/biomedicines5040062
    1. Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology (Bethesda) (2015) 30:8–16. 10.1152/physiol.00033.2014
    1. Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, et al. . MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol (2018) 234:231–45. 10.1002/jcp.26856
    1. Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone (2015) 80:109–14. 10.1016/j.bone.2015.02.010
    1. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol (2010) 205:201–10. 10.1677/JOE-09-0431
    1. Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene (2012) 503:179–93. 10.1016/j.gene.2012.04.076
    1. Khosla S. Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci (2013) 68:1226–35. 10.1093/gerona/gls163
    1. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol (2012) 3:260. 10.3389/fphys.2012.00260
    1. Brotto M, Johnson ML. Endocrine crosstalk between muscle and bone. Curr Osteoporos Rep (2014) 12:135–41. 10.1007/s11914-014-0209-0
    1. Kirk B, Feehan J, Lombardi G, Duque G. Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines. Curr Osteoporos Rep (2020) 18:388–400. 10.1007/s11914-020-00599-y
    1. Koolstra JH. Dynamics of the human masticatory system. Crit Rev Oral Biol Med (2002) 13:366–76. 10.1177/154411130201300406
    1. de Jong WC, Korfage JA, Langenbach GE. The role of masticatory muscles in the continuous loading of the mandible. J Anat (2011) 218:625–36. 10.1111/j.1469-7580.2011.01375.x
    1. Tsouknidas A, Jimenez-Rojo L, Karatsis E, Michailidis N, Mitsiadis TA. A Bio-Realistic Finite Element Model to Evaluate the Effect of Masticatory Loadings on Mouse Mandible-Related Tissues. Front Physiol (2017) 8:273. 10.3389/fphys.2017.00273
    1. Ahmad M, Schiffman EL. Temporomandibular Joint Disorders and Orofacial Pain. Dent Clin North Am (2016) 60:105–24. 10.1016/j.cden.2015.08.004
    1. Okeson JP, de Leeuw R. Differential diagnosis of temporomandibular disorders and other orofacial pain disorders. Dent Clin North Am (2011) 55:105–20. 10.1016/j.cden.2010.08.007
    1. Korfage JA, Koolstra JH, Langenbach GE, van Eijden TM. Fiber-type composition of the human jaw muscles–(part 1) origin and functional significance of fiber-type diversity. J Dent Res (2005) 84:774–83. 10.1177/154405910508400901
    1. Korfage JA, Koolstra JH, Langenbach GE, van Eijden TM. Fiber-type composition of the human jaw muscles–(part 2) role of hybrid fibers and factors responsible for inter-individual variation. J Dent Res (2005) 84:784–93. 10.1177/154405910508400902
    1. Sciote JJ, Horton MJ, Rowlerson AM, Link J. Specialized cranial muscles: how different are they from limb and abdominal muscles? Cells Tissues Organs (2003) 174:73–86. 10.1159/000070576
    1. Isola G, Anastasi GP, Matarese G, Williams RC, Cutroneo G, Bracco P, et al. . Functional and molecular outcomes of the human masticatory muscles. Oral Dis (2018) 24:1428–41. 10.1111/odi.12806
    1. Akintoye SO. The distinctive jaw and alveolar bone regeneration. Oral Dis (2018) 24:49–51. 10.1111/odi.12761
    1. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone (2006) 38:758–68. 10.1016/j.bone.2005.10.027
    1. Li C, Wang F, Zhang R, Qiao P, Liu H. Comparison of Proliferation and Osteogenic Differentiation Potential of Rat Mandibular and Femoral Bone Marrow Mesenchymal Stem Cells In Vitro. Stem Cells Dev (2020) 29:728–36. 10.1089/scd.2019.0256
    1. Singhal V, Torre Flores LP, Stanford FC, Toth AT, Carmine B, Misra M, et al. . Differential associations between appendicular and axial marrow adipose tissue with bone microarchitecture in adolescents and young adults with obesity. Bone (2018) 116:203–6. 10.1016/j.bone.2018.08.009
    1. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec (1987) 219:1–9. 10.1002/ar.1092190104
    1. Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol (2003) 275:1081–101. 10.1002/ar.a.10119
    1. Hsieh YF, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res (2001) 16:918–24. 10.1359/jbmr.2001.16.5.918
    1. Lad SE, McGraw WS, Daegling DJ. Haversian remodeling corresponds to load frequency but not strain magnitude in the macaque (Macaca fascicularis) skeleton. Bone (2019) 127:571–6. 10.1016/j.bone.2019.07.027
    1. Ethier CR. Introductory biomechanics from cells to organisms. Cambridge: Cambridge University Press; (2007). 10.1017/CBO9780511809217
    1. Bullock WAP, Plotkin LI, Robling AG, Pavalko FM. Mechanotransduction in Bone Formation and Maintenance. In: Bilezikian JP, Bouillon R, Clemens T, Compston J, Bauer DC, Ebeling PR, et al. ., editors. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. (2018). p. 75–83. 10.1002/9781119266594.ch10
    1. Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene (2006) 367:1–16. 10.1016/j.gene.2005.10.028
    1. Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte Mechanobiology. Curr Osteoporos Rep (2017) 15:318–25. 10.1007/s11914-017-0373-0
    1. Hylander WL. Functional anatomy and biomechanics of the masticatory apparatus, Temporomandibular disorders: an evidenced approach to diagnosis and treatment. New York: Quintessence Pub Co. (2006).
    1. Lieberman D. The evolution of the human head. Cambridge, Mass.: Belknap Press of Harvard University Press; (2011).
    1. Toro-Ibacache V, Ugarte F, Morales C, Eyquem A, Aguilera J, Astudillo W. Dental malocclusions are not just about small and weak bones: assessing the morphology of the mandible with cross-section analysis and geometric morphometrics. Clin Oral Investig (2019) 23:3479–90. 10.1007/s00784-018-2766-6
    1. Daegling DJ. The relationship of in vivo bone strain to mandibular corpus morphology in Macaca fascicularis. J Hum Evol (1993) 25:247–69. 10.1006/jhev.1993.1048
    1. Gröning F, Liu J, Fagan MJ, O’Higgins P. Why do humans have chins?Testing the mechanical significance of modern human symphyseal morphology with finite element analysis. Am J Phys Anthropol (2011) 144:593–606. 10.1002/ajpa.21447
    1. Hylander WL. Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am J Phys Anthropol (1984) 64:1–46. 10.1002/ajpa.1330640102
    1. Hylander WL. Mandibular Function and Biomechanical Stress and Scaling. Am Zool (1985) 25:315–30. 10.1093/icb/25.2.315
    1. Fukase H. Functional significance of bone distribution in the human mandibular symphysis. Anthropol Sci (2007) 115:55–62. 10.1537/ase.060329
    1. Bromage T. Microstructural organization and biomechanics of the macaque circumorbital region, Structure, function and evolution of teeth. London: Freund Publishing House; (1992). p. 257–72.
    1. Kupczik K, Dobson CA, Crompton RH, Phillips R, Oxnard CE, Fagan MJ, et al. . Masticatory loading and bone adaptation in the supraorbital torus of developing macaques. Am J Phys Anthropol (2009) 139:193–203. 10.1002/ajpa.20972
    1. Toro-Ibacache V, Fitton LC, Fagan MJ, O’Higgins P. Validity and sensitivity of a human cranial finite element model: implications for comparative studies of biting performance. J Anat (2016) 228:70–84. 10.1111/joa.12384
    1. Toro-Ibacache V, O’Higgins P. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium. Anat Rec (2016) 299:828–39. 10.1002/ar.23358
    1. Toro-Ibacache V, Zapata Muñoz V, O’Higgins P. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting. Ann Anat (2016) 203:59–68. 10.1016/j.aanat.2015.03.002
    1. Brachetta-Aporta N, Gonzalez PN, Bernal V. Variation in facial bone growth remodeling in prehistoric populations from southern South America. Am J Phys Anthropol (2019) 169:422–34. 10.1002/ajpa.23857
    1. Fitton LC, PrôA M, Rowland C, Toro-ibacache V, O’Higgins P. The Impact of Simplifications on the Performance of a Finite Element Model of a Macaca fascicularis Cranium. Anat Rec (2015) 298:107–21. 10.1002/ar.23075
    1. Strait DS, Richmond BG, Spencer MA, Ross CF, Dechow PC, Wood BA. Masticatory biomechanics and its relevance to early hominid phylogeny: An examination of palatal thickness using finite-element analysis. J Hum Evol (2007) 52:585–99. 10.1016/j.jhevol.2006.11.019
    1. Balanta-Melo J, Toro-Ibacache V, Torres-Quintana MA, Kupczik K, Vega C, Morales C, et al. . Early molecular response and microanatomical changes in the masseter muscle and mandibular head after botulinum toxin intervention in adult mice. Ann Anat (2018) 216:112–9. 10.1016/j.aanat.2017.11.009
    1. Balanta-Melo J, Torres-Quintana MA, Bemmann M, Vega C, Gonzalez C, Kupczik K, et al. . Masseter muscle atrophy impairs bone quality of the mandibular condyle but not the alveolar process early after induction. J Oral Rehabil (2019) 46:233–41. 10.1111/joor.12747
    1. Terhune CE, Sylvester AD, Scott JE, Ravosa MJ. Internal architecture of the mandibular condyle of rabbits is related to dietary resistance during growth. J Exp Biol (2020) 223:jeb220988. 10.1242/jeb.220988
    1. Menegaz RA, Sublett SV, Figueroa SD, Hoffman TJ, Ravosa MJ, Aldridge K. Evidence for the influence of diet on cranial form and robusticity. Anat Rec (Hoboken) (2010) 293:630–41. 10.1002/ar.21134
    1. Spassov A, Toro-Ibacache V, Krautwald M, Brinkmeier H, Kupczik K. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently. J Anat (2017) 231:736–48. 10.1111/joa.12664
    1. Raphael KG, Tadinada A, Bradshaw JM, Janal MN, Sirois DA, Chan KC, et al. . Osteopenic consequences of botulinum toxin injections in the masticatory muscles: a pilot study. J Oral Rehabil (2014) 41:555–63. 10.1111/joor.12180
    1. Commisso MS, Martínez-Reina J, Mayo J. A study of the temporomandibular joint during bruxism. Int J Oral Sci (2014) 6:116–23. 10.1038/ijos.2014.4
    1. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res (2008) 87:296–307. 10.1177/154405910808700406
    1. Egli F, Botteron S, Morel C, Kiliaridis S. Growing patients with Duchenne muscular dystrophy: longitudinal changes in their dentofacial morphology and orofacial functional capacities. Eur J Orthod (2018) 40:140–8. 10.1093/ejo/cjx038
    1. Corruccini RS. An epidemiologic transition in dental occlusion in world populations. Am J Orthod (1984) 86:419–26. 10.1016/S0002-9416(84)90035-6
    1. Lieberman DE, Krovitz GE, Yates FW, Devlin M, St M. Claire, Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face. J Hum Evol (2004) 46:655–77. 10.1016/j.jhevol.2004.03.005
    1. Sarig R, Slon V, Abbas J, May H, Shpack N, Vardimon AD, et al. . Malocclusion in early anatomically modern human: a reflection on the etiology of modern dental misalignment. PLoS One (2013) 8:e80771–1. 10.1371/journal.pone.0080771
    1. English JD, Buschang PH, Throckmorton GS. Does malocclusion affect masticatory performance? Angle Orthod (2002) 72:21–7. 10.1043/0003-3219(2002)072<0021:DMAMP>;2
    1. Eyquem AP, Kuzminsky SC, Aguilera J, Astudillo W, Toro-Ibacache V. Normal and altered masticatory load impact on the range of craniofacial shape variation: An analysis of pre-Hispanic and modern populations of the American Southern Cone. PLoS One (2019) 14:e0225369–e0225369. 10.1371/journal.pone.0225369
    1. Toro-Ibacache V, Cortés Araya J, Díaz Muñoz A, Manríquez Soto G. Morphologic variability of nonsyndromic operated patients affected by cleft lip and palate: a geometric morphometric study. Am J Orthod Dentofacial Orthop (2014) 146:346–54. 10.1016/j.ajodo.2014.06.002
    1. Stelzer S, Gunz P, Neubauer S, Spoor F. Hominoid arcade shape: Pattern and magnitude of covariation. J Hum Evol (2017) 107:71–85. 10.1016/j.jhevol.2017.02.010
    1. Alarcón JA, Bastir M, García-Espona I, Menéndez-Núñez M, Rosas A. Morphological integration of mandible and cranium: Orthodontic implications. Arch Oral Biol (2014) 59:22–9. 10.1016/j.archoralbio.2013.10.005
    1. Avin KG, Bloomfield SA, Gross TS, Warden SJ. Biomechanical aspects of the muscle-bone interaction. Curr Osteoporos Rep (2015) 13:1–8. 10.1007/s11914-014-0244-x
    1. Ferretti JL, Cointry GR, Capozza RF, Frost HM. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev (2003) 124:269–79. 10.1016/S0047-6374(02)00194-X
    1. Karsenty G, Mera P. Molecular bases of the crosstalk between bone and muscle. Bone (2017) 115:43–49. 10.1016/j.bone.2017.04.006
    1. Bonewald L. Use it or lose it to age: A review of bone and muscle communication. Bone (2019) 120:212–8. 10.1016/j.bone.2018.11.002
    1. Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol (2017) 34:49–55. 10.1016/j.coph.2017.05.005
    1. Kitase Y, Vallejo JA, Gutheil W, Vemula H, Jahn K, Yi J, et al. . beta-aminoisobutyric Acid, l-BAIBA, Is a Muscle-Derived Osteocyte Survival Factor. Cell Rep (2018) 22:1531–44. 10.1016/j.celrep.2018.01.041
    1. Qin W, Dallas SL. Exosomes and Extracellular RNA in Muscle and Bone Aging and Crosstalk. Curr Osteoporos Rep (2019) 17:548–59. 10.1007/s11914-019-00537-7
    1. Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, et al. . Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem (2017) 292:11021–33. 10.1074/jbc.M116.770941
    1. Huh JY. The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res (2018) 41:14–29. 10.1007/s12272-017-0994-y
    1. Little HC, Tan SY, Cali FM, Rodriguez S, Lei X, Wolfe A, et al. . Multiplex Quantification Identifies Novel Exercise-regulated Myokines/Cytokines in Plasma and in Glycolytic and Oxidative Skeletal Muscle. Mol Cell Proteomics (2018) 17:1546–63. 10.1074/mcp.RA118.000794
    1. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell … and more. Endocr Rev (2013) 34:658–90. 10.1210/er.2012-1026
    1. DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol (2012) 8:674–83. 10.1038/nrrheum.2012.157
    1. Sanchez C, Mazzucchelli G, Lambert C, Comblain F, DePauw E, Henrotin Y. Comparison of secretome from osteoblasts derived from sclerotic versus non-sclerotic subchondral bone in OA: A pilot study. PLoS One (2018) 13:e0194591. 10.1371/journal.pone.0194591
    1. Chowdhury S, Schulz L, Palmisano B, Singh P, Berger JM, Yadav VK, et al. . Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J Clin Invest (2020) 130:2888–902. 10.1172/JCI133572
    1. Mo C, Romero-Suarez S, Bonewald L, Johnson M, Brotto M. Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol (2012) 6:223–9. 10.2174/1872208311206030223
    1. Wacker MJ, Touchberry CD, Silswal N, Brotto L, Elmore CJ, Bonewald LF, et al. . Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets. Front Physiol (2016) 7:173. 10.3389/fphys.2016.00173
    1. Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, et al. . Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med (2015) 21:1262–71. 10.1038/nm.3961
    1. Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest (2019) 129:3214–23. 10.1172/JCI125915
    1. Hamoudi D, Marcadet L, Piette Boulanger A, Yagita H, Bouredji Z, Argaw A, et al. . An anti-RANKL treatment reduces muscle inflammation and dysfunction and strengthens bone in dystrophic mice. Hum Mol Genet (2019) 28:3101–12. 10.1093/hmg/ddz124
    1. Huang J, Romero-Suarez S, Lara N, Mo C, Kaja S, Brotto L, et al. . Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/beta-catenin pathway. JBMR Plus (2017) 1:86–100. 10.1002/jbm4.10015
    1. Elkasrawy M, Immel D, Wen X, Liu X, Liang LF, Hamrick MW. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J Histochem Cytochem (2012) 60:22–30. 10.1369/0022155411425389
    1. Harry LE, Sandison A, Paleolog EM, Hansen U, Pearse MF, Nanchahal J. Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res (2008) 26:1238–44. 10.1002/jor.20649
    1. Jahn K, Lara-Castillo N, Brotto L, Mo CL, Johnson ML, Brotto M, et al. . Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur Cell Mater (2012) 24:197–209; discussion 209-10. 10.22203/eCM.v024a14
    1. Che X, Guo J, Li X, Wang L, Wei S. Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats. Mol Med Rep (2016) 13:681–8. 10.3892/mmr.2015.4578
    1. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature (1997) 387:83–90. 10.1038/387083a0
    1. Carnac G, Vernus B, Bonnieu A. Myostatin in the pathophysiology of skeletal muscle. Curr Genomics (2007) 8:415–22. 10.2174/138920207783591672
    1. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology (2014) 60:289–93. 10.1159/000356740
    1. Buehring B, Binkley N. Myostatin–the holy grail for muscle, bone, and fat? Curr Osteoporos Rep (2013) 11:407–14. 10.1007/s11914-013-0160-5
    1. Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact (2010) 10:56–63.
    1. Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res (2006) 21:477–83. 10.1359/JBMR.051203
    1. Lodberg A, van der Eerden BCJ, Boers-Sijmons B, Thomsen JS, Bruel A, van Leeuwen J, et al. . A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J (2019) 33:6001–10. 10.1096/fj.201801969RR
    1. Wallner C, Jaurich H, Wagner JM, Becerikli M, Harati K, Dadras M, et al. . Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci Rep (2017) 7:9878. 10.1038/s41598-017-10404-z
    1. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, et al. . Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med (2015) 21:1085–90. 10.1038/nm.3917
    1. Ravosa MJ, Lopez EK, Menegaz RA, Stock SR, Stack MS, Hamrick MW. Using “Mighty Mouse” to understand masticatory plasticity: myostatin-deficient mice and musculoskeletal function. Integr Comp Biol (2008) 48:345–59. 10.1093/icb/icn050
    1. Ravosa MJ, Klopp EB, Pinchoff J, Stock SR, Hamrick MW. Plasticity of mandibular biomineralization in myostatin-deficient mice. J Morphol (2007) 268:275–82. 10.1002/jmor.10517
    1. Nicholson EK, Stock SR, Hamrick MW, Ravosa MJ. Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice. Arch Oral Biol (2006) 51:37–49. 10.1016/j.archoralbio.2005.05.008
    1. Vecchione L, Miller J, Byron C, Cooper GM, Barbano T, Cray J, et al. . Age-related changes in craniofacial morphology in GDF-8 (myostatin)-deficient mice. Anat Rec (Hoboken) (2010) 293:32–41. 10.1002/ar.21024
    1. Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda) (2005) 20:232–8. 10.1152/physiol.00004.2005
    1. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev (2008) 29:535–59. 10.1210/er.2007-0036
    1. Reijnders CM, Bravenboer N, Tromp AM, Blankenstein MA, Lips P. Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol (2007) 192:131–40. 10.1677/joe.1.06880
    1. Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. Bone (2015) 80:79–88. 10.1016/j.bone.2015.04.036
    1. Kineman RD, Del Rio-Moreno M, Sarmento-Cabral A. 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. J Mol Endocrinol (2018) 61:T187–t198. 10.1530/JME-18-0076
    1. Saito T, Fukui K, Akutsu S, Nakagawa Y, Ishibashi K, Nagata J, et al. . Effects of diet consistency on the expression of insulin-like growth factors (IGFs), IGF receptors and IGF binding proteins during the development of rat masseter muscle soon after weaning. Arch Oral Biol (2004) 49:777–82. 10.1016/j.archoralbio.2004.02.014
    1. Urushiyama T, Akutsu S, Miyazaki J, Fukui T, Diekwisch TG, Yamane A. Change from a hard to soft diet alters the expression of insulin-like growth factors, their receptors, and binding proteins in association with atrophy in adult mouse masseter muscle. Cell Tissue Res (2004) 315:97–105. 10.1007/s00441-003-0787-0
    1. Vilmann H, Kirkeby S, Kronborg D. Histomorphometrical analysis of the influence of soft diet on masticatory muscle development in the muscular dystrophic mouse. Arch Oral Biol (1990) 35:37–42. 10.1016/0003-9969(90)90112-N
    1. Tanaka E, Sano R, Kawai N, Langenbach GE, Brugman P, Tanne K, et al. . Effect of food consistency on the degree of mineralization in the rat mandible. Ann BioMed Eng (2007) 35:1617–21. 10.1007/s10439-007-9330-x
    1. Odman A, Mavropoulos A, Kiliaridis S. Do masticatory functional changes influence the mandibular morphology in adult rats. Arch Oral Biol (2008) 53:1149–54. 10.1016/j.archoralbio.2008.07.004
    1. Kawai N, Sano R, Korfage JA, Nakamura S, Kinouchi N, Kawakami E, et al. . Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study. J Anat (2010) 216:717–23. 10.1111/j.1469-7580.2010.01235.x
    1. Hichijo N, Kawai N, Mori H, Sano R, Ohnuki Y, Okumura S, et al. . Effects of the masticatory demand on the rat mandibular development. J Oral Rehabil (2014) 41:581–7. 10.1111/joor.12171
    1. Hichijo N, Tanaka E, Kawai N, van Ruijven LJ, Langenbach GE. Effects of Decreased Occlusal Loading during Growth on the Mandibular Bone Characteristics. PLoS One (2015) 10:e0129290. 10.1371/journal.pone.0129290
    1. Shi Z, Lv J, Xiaoyu L, Zheng LW, Yang XW. Condylar Degradation from Decreased Occlusal Loading following Masticatory Muscle Atrophy. BioMed Res Int (2018) 2018:6947612. 10.1155/2018/6947612
    1. Rojas-Beato C. PhD Thesis: Efecto de la actividad masticatoria sobre la producción y liberación de IL-1b e IL-6 a través de la señalización por ATP extracelular en fibras de músculo masetero de ratón. Santiago, Chile: Faculty of Medicine, Universidad de Chile; (2019). p. 120.
    1. Tsai CY, Chiu WC, Liao YH, Tsai CM. Effects on craniofacial growth and development of unilateral botulinum neurotoxin injection into the masseter muscle. Am J Orthod Dentofacial Orthop (2009) 135:142.e1–6; discussion 142-3. 10.1016/j.ajodo.2008.06.020
    1. Tsai CY, Huang RY, Lee CM, Hsiao WT, Yang LY. Morphologic and bony structural changes in the mandible after a unilateral injection of botulinum neurotoxin in adult rats. J Oral Maxillofac Surg (2010) 68:1081–7. 10.1016/j.joms.2009.12.009
    1. Tsai CY, Lei YY, Yang LY, Chiu WC. Changes of masseter muscle activity following injection of botulinum toxin type A in adult rats. Orthod Craniofac Res (2015) 18:202–11. 10.1111/ocr.12095
    1. Kün-Darbois JD, Libouban H, Chappard D. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis. Bone (2015) 77:75–82. 10.1016/j.bone.2015.03.023
    1. Dutra EH, MH OB, Lima A, Kalajzic Z, Tadinada A, Nanda R, et al. . Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin. PLoS One (2016) 11:e0164599. 10.1371/journal.pone.0164599
    1. Balanta-Melo J, Beato C, Vásquez V, Kupczik K, Toro-ibacache V, Buvinic S. Extracellular nucleotides in muscle-bone crosstalk at the masticatory system, 2018. J Dent Res (2018) 97(Special Issue C):oral1004.
    1. Balanta-Melo J, Toro-Ibacache V, Kupczik K, Buvinic S. Mandibular Bone Loss after Masticatory Muscles Intervention with Botulinum Toxin: An Approach from Basic Research to Clinical Findings. Toxins (Basel) (2019) 11:1–16. 10.3390/toxins11020084
    1. Dutra EH, Yadav S. The effects on the mandibular condyle of Botox injection into the masseter are not transient. Am J Orthod Dentofacial Orthop (2019) 156:193–202. 10.1016/j.ajodo.2018.08.023
    1. Vásquez W. . Thesis: Efectos de la inyección de toxina botulínica tipo A sobre la vía de señalización del ATP extracelular en músculo masetero de ratón. Santiago, Chile: Faculty of Medicine, Universidad de Chile; (2020). p. 61.
    1. Losel PD, van de Kamp T, Jayme A, Ershov A, Farago T, Pichler O, et al. . Introducing Biomedisa as an open-source online platform for biomedical image segmentation. Nat Commun (2020) 11:5577. 10.1038/s41467-020-19303-w
    1. Balanta-Melo JE, Eyquem A, Toro-Ibacache V, Torres-Quintana M, Kupczik K, Buvinic S. Quantifying Jaw Muscle Volumes Following Masseter Hypofunction With Contrast-Enhanced Micro-CT, IADR/AADR/CADR General Session 98th General Session. J Dent Res (2020) 99(Spec Iss A):2770.
    1. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab (2014) 307:E469–84. 10.1152/ajpendo.00204.2014
    1. Enomoto A, Watahiki J, Yamaguchi T, Irie T, Tachikawa T, Maki K. Effects of mastication on mandibular growth evaluated by microcomputed tomography. Eur J Orthod (2010) 32:66–70. 10.1093/ejo/cjp060
    1. Inoue M, Ono T, Kameo Y, Sasaki F, Ono T, Adachi T, et al. . Forceful mastication activates osteocytes and builds a stout jawbone. Sci Rep (2019) 9:4404. 10.1038/s41598-019-40463-3
    1. Dayer JM, Choy E. Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford) (2010) 49:15–24. 10.1093/rheumatology/kep329
    1. Blanchard F, Duplomb L, Baud’huin M, Brounais B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev (2009) 20:19–28. 10.1016/j.cytogfr.2008.11.004
    1. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev (2008) 88:1379–406. 10.1152/physrev.90100.2007
    1. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. . Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil (2003) 24:113–9. 10.1023/A:1026070911202
    1. Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J (2004) 18:992–4. 10.1096/fj.03-1259fje
    1. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol (1999) 515(Pt 1):287–91. 10.1111/j.1469-7793.1999.287ad.x
    1. Rosendal L, Sogaard K, Kjaer M, Sjogaard G, Langberg H, Kristiansen J. Increase in interstitial interleukin-6 of human skeletal muscle with repetitive low-force exercise. J Appl Physiol (1985) 98(2005):477–81. 10.1152/japplphysiol.00130.2004
    1. Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes (2004) 53:1643–8. 10.2337/diabetes.53.7.1643
    1. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol (2012) 8:457–65. 10.1038/nrendo.2012.49
    1. Cantini M, Massimino ML, Rapizzi E, Rossini K, Catani C, Dalla Libera L, et al. . Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Commun (1995) 216:49–53. 10.1006/bbrc.1995.2590
    1. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab (2008) 7:33–44. 10.1016/j.cmet.2007.11.011
    1. Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, et al. . Cachexia: a new definition. Clin Nutr (2008) 27:793–9. 10.1016/j.clnu.2008.06.013
    1. Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, et al. . STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One (2011) 6:e22538. 10.1371/journal.pone.0022538
    1. Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, et al. . JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab (2012) 303:E410–21. 10.1152/ajpendo.00039.2012
    1. Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy. J Appl Physiol (1985) 98(2005):911–7. 10.1152/japplphysiol.01026.2004
    1. Tsujinaka T, Ebisui C, Fujita J, Kishibuchi M, Morimoto T, Ogawa A, et al. . Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse. Biochem Biophys Res Commun (1995) 207:168–74. 10.1006/bbrc.1995.1168
    1. Tsujinaka T, Fujita J, Ebisui C, Yano M, Kominami E, Suzuki K, et al. . Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest (1996) 97:244–9. 10.1172/JCI118398
    1. Ando K, Takahashi F, Kato M, Kaneko N, Doi T, Ohe Y, et al. . Tocilizumab, a proposed therapy for the cachexia of Interleukin6-expressing lung cancer. PLoS One (2014) 9:e102436. 10.1371/journal.pone.0102436
    1. Zaki MH, Nemeth JA, Trikha M. CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. Int J Cancer (2004) 111:592–5. 10.1002/ijc.20270
    1. Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle (2017) 7:23. 10.1186/s13395-017-0140-z
    1. Yakabe M, Ogawa S, Ota H, Iijima K, Eto M, Ouchi Y, et al. . Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy. PLoS One (2018) 13:e0191318. 10.1371/journal.pone.0191318
    1. Itoh S, Udagawa N, Takahashi N, Yoshitake F, Narita H, Ebisu S, et al. . A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone (2006) 39:505–12. 10.1016/j.bone.2006.02.074
    1. Takeuchi Y, Watanabe S, Ishii G, Takeda S, Nakayama K, Fukumoto S, et al. . Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J Biol Chem (2002) 277:49011–8. 10.1074/jbc.M207804200
    1. Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, et al. . IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab (2014) 32:378–92. 10.1007/s00774-013-0514-1
    1. Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol (2002) 169:3353–62. 10.4049/jimmunol.169.6.3353
    1. Yokota K, Sato K, Miyazaki T, Kitaura H, Kayama H, Miyoshi F, et al. . Combination of tumor necrosis factor alpha and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol (2014) 66:121–9. 10.1002/art.38218
    1. Duplomb L, Baud’huin M, Charrier C, Berreur M, Trichet V, Blanchard F, et al. . Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. Endocrinology (2008) 149:3688–97. 10.1210/en.2007-1719
    1. Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem (2008) 283:11535–40. 10.1074/jbc.M607999200
    1. Karsdal MA, Schett G, Emery P, Harari O, Byrjalsen I, Kenwright A, et al. . IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE study (NCT00106522). Semin Arthritis Rheum (2012) 42:131–9. 10.1016/j.semarthrit.2012.01.004
    1. Terpos E, Fragiadaki K, Konsta M, Bratengeier C, Papatheodorou A, Sfikakis PP. Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin Exp Rheumatol (2011) 29:921–5.
    1. Rozen N, Lewinson D, Bick T, Jacob ZC, Stein H, Soudry M. Fracture repair: modulation of fracture-callus and mechanical properties by sequential application of IL-6 following PTH 1-34 or PTH 28-48. Bone (2007) 41:437–45. 10.1016/j.bone.2007.04.193
    1. Chiba K, Tsuchiya M, Koide M, Hagiwara Y, Sasaki K, Hattori Y, et al. . Involvement of IL-1 in the Maintenance of Masseter Muscle Activity and Glucose Homeostasis. PLoS One (2015) 10:e0143635. 10.1371/journal.pone.0143635
    1. Ono T, Maekawa K, Watanabe S, Oka H, Kuboki T. Muscle contraction accelerates IL-6 mRNA expression in the rat masseter muscle. Arch Oral Biol (2007) 52:479–86. 10.1016/j.archoralbio.2006.10.025
    1. Beato C, Vicencio N, Casas M, Buvinic S. Mouse masseter muscle activity induces IL1β and IL6 expression mediated by extracellular ATP signaling, Experimental Biology. FASEB J San Diego CA U S A (2018) 32:857.5–857.5. 10.1096/fasebj.2018.32.1_supplement.857.5
    1. Buvinic S. Muscle-Bone crosstalk at the masticatory system: unveiling molecular mediators in health and disease. In: Annual Meeting of the Chilean Society for Physiological Sciences. Santa Cruz, Chile: In Vitro; (2019). p. 23. Available at: .
    1. Balanta-Melo J, Buvinic S. Mandibular bone loss: a hidden side effect of botulinum toxin type A injection in masticatory muscles. J Oral Res (2018) 7:44–6. 10.17126/joralres.2018.014
    1. Vásquez W, Arias-Calderón M, Beato C, Balanta-Melo J, Hernández N, Llanos P, et al. . La parálisis inducida por Toxina Botulínica tipo A exacerba la vía de ATP extracelular en el músculo masetero de ratón. In: Annual Meeting of the Chilean Society for Physiological Sciences. Santa Cruz, Chile: In Vitro (2019). p. 66. Available at: .
    1. Kim JY, Kim ST, Cho SW, Jung HS, Park KT, Son HK. Growth effects of botulinum toxin type A injected into masseter muscle on a developing rat mandible. Oral Dis (2008) 14:626–32. 10.1111/j.1601-0825.2007.01435.x
    1. Zwiri A, Al-Hatamleh MAI, Wma WA, Ahmed Asif J, Khoo SP, Husein A, et al. . Biomarkers for Temporomandibular Disorders: Current Status and Future Directions. Diagnostics (Basel) (2020) 10:1–18. 10.3390/diagnostics10050303
    1. Kim YK, Kim SG, Kim BS, Lee JY, Yun PY, Bae JH, et al. . Analysis of the cytokine profiles of the synovial fluid in a normal temporomandibular joint: preliminary study. J Craniomaxillofac Surg (2012) 40:e337–41. 10.1016/j.jcms.2012.02.002
    1. Kristensen KD, Alstergren P, Stoustrup P, Kuseler A, Herlin T, Pedersen TK. Cytokines in healthy temporomandibular joint synovial fluid. J Oral Rehabil (2014) 41:250–6. 10.1111/joor.12146
    1. Shinoda C, Takaku S. Interleukin-1 beta, interleukin-6, and tissue inhibitor of metalloproteinase-1 in the synovial fluid of the temporomandibular joint with respect to cartilage destruction. Oral Dis (2000) 6:383–90. 10.1111/j.1601-0825.2000.tb00131.x
    1. Kaneyama K, Segami N, Sato J, Nishimura M, Yoshimura H. Interleukin-6 family of cytokines as biochemical markers of osseous changes in the temporomandibular joint disorders. Br J Oral Maxillofac Surg (2004) 42:246–50. 10.1016/S0266-4356(03)00258-4
    1. Satokawa C, Nishiyama A, Suzuki K, Uesugi S, Kokai S, Ono T. Evaluation of tissue oxygen saturation of the masseter muscle during standardised teeth clenching. J Oral Rehabil (2020) 47:19–26. 10.1111/joor.12863
    1. Suzuki S, Castrillon EE, Arima T, Kitagawa Y, Svensson P. Blood oxygenation of masseter muscle during sustained elevated muscle activity in healthy participants. J Oral Rehabil (2016) 43:900–10. 10.1111/joor.12450
    1. Britto FA, Gnimassou O, De Groote E, Balan E, Warnier G, Everard A, et al. . Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human. FASEB J (2020) 34:1885–900. 10.1096/fj.201902244R
    1. Aguilera SB, Brown L, Perico VA. Aesthetic Treatment of Bruxism. J Clin Aesthet Dermatol (2017) 10:49–55.
    1. Yoshida Y, Suganuma T, Takaba M, Ono Y, Abe Y, Yoshizawa S, et al. . Association between patterns of jaw motor activity during sleep and clinical signs and symptoms of sleep bruxism. J Sleep Res (2017) 26:415–21. 10.1111/jsr.12481
    1. Ayoub S, Berberi A, Fayyad-Kazan M. Cytokines, Masticatory Muscle Inflammation, and Pain: an Update. J Mol Neurosci (2020) 70:790–5. 10.1007/s12031-020-01491-1
    1. Beaumont S, Garg K, Gokhale A, Heaphy N. Temporomandibular Disorder: a practical guide for dental practitioners in diagnosis and management. Aust Dent J (2020) 65:172–80. 10.1111/adj.12785
    1. Takeuchi T, Arima T, Ernberg M, Yamaguchi T, Ohata N, Svensson P. Symptoms and physiological responses to prolonged, repeated, low-level tooth clenching in humans. Headache (2015) 55:381–94. 10.1111/head.12528
    1. Louca Jounger S, Christidis N, Svensson P, List T, Ernberg M. Increased levels of intramuscular cytokines in patients with jaw muscle pain. J Headache Pain (2017) 18:30. 10.1186/s10194-017-0737-y
    1. Kebede B, Megersa S. Idiopathic masseter muscle hypertrophy. Ethiop J Health Sci (2011) 21:209–12.
    1. Fedorowicz Z, van Zuuren EJ, Schoones J. Botulinum toxin for masseter hypertrophy. Cochrane Database Syst Rev (2013) 2013:CD007510. 10.1002/14651858.CD007510.pub3
    1. Kamburoglu K, Sonmez G, Nalcaci R, Yurttutan E, Tuzunel AO. Ultrasonographic Evaluation Of The Masseter Muscle Before And After Botulinum Toxin Injection In Patients With Bruxism. Oral Surg Oral Med Oral Pathol Oral Radiol (2019) 128:e174. 10.1016/j.oooo.2019.01.059
    1. Salari M, Sharma S, Jog MS. Botulinum Toxin Induced Atrophy: An Uncharted Territory. Toxins (Basel) (2018) 10:1–11. 10.3390/toxins10080313
    1. Park G, Choi YC, Bae JH, Kim ST. Does Botulinum Toxin Injection into Masseter Muscles Affect Subcutaneous Thickness? Aesthet Surg J (2018) 38:192–8. 10.1093/asj/sjx102
    1. Lee HJ, Kim SJ, Lee KJ, Yu HS, Baik HS. Repeated injections of botulinum toxin into the masseter muscle induce bony changes in human adults: A longitudinal study. Korean J Orthod (2017) 47:222–8. 10.4041/kjod.2017.47.4.222
    1. Kahn A, Kun-Darbois JD, Bertin H, Corre P, Chappard D. Mandibular bone effects of botulinum toxin injections in masticatory muscles in adult. Oral Surg Oral Med Oral Pathol Oral Radiol (2020) 129:100–8. 10.1016/j.oooo.2019.03.007
    1. Hong SW, Kang JH. Decreased mandibular cortical bone quality after botulinum toxin injections in masticatory muscles in female adults. Sci Rep (2020) 10:3623. 10.1038/s41598-020-60554-w
    1. De la Torre Canales G, Alvarez-Pinzon N, Munoz-Lora VRM, Vieira Peroni L, Farias Gomes A, Sanchez-Ayala A, et al. . Efficacy and Safety of Botulinum Toxin Type A on Persistent Myofascial Pain: A Randomized Clinical Trial. Toxins (Basel) (2020) 12:1–13. 10.3390/toxins12060395
    1. Raphael KG, Janal MN, Tadinada A, Santiago V, Sirois DA, Lurie AG. Effect of Multiple Injections of Botulinum Toxin into Painful Masticatory Muscles on Bone Density in the Temporomandibular Complex. J Oral Rehabil (2020) 47:1319–29. 10.1111/joor.13087
    1. Thanakun S, Pornprasertsuk-Damrongsri S, Na Mahasarakham CP, Techatanawat S, Izumi Y. Increased Plasma Osteocalcin, Oral Disease, and Altered Mandibular Bone Density in Postmenopausal Women. Int J Dent (2019) 2019):3715127. 10.1155/2019/3715127
    1. Strollo F, Gentile S, Strollo G, Mambro A, Vernikos J. Recent Progress in Space Physiology and Aging. Front Physiol (2018) 9:1551. 10.3389/fphys.2018.01551
    1. Rai B, Kaur J, Catalina M. Bone mineral density, bone mineral content, gingival crevicular fluid (matrix metalloproteinases, cathepsin K, osteocalcin), and salivary and serum osteocalcin levels in human mandible and alveolar bone under conditions of simulated microgravity. J Oral Sci (2010) 52:385–90. 10.2334/josnusd.52.385
    1. Philippou A, Minozzo FC, Spinazzola JM, Smith LR, Lei H, Rassier DE, et al. . Masticatory muscles of mouse do not undergo atrophy in space. FASEB J (2015) 29:2769–79. 10.1096/fj.14-267336
    1. Stigler RG, Becker K, Hasanov E, Hormann R, Gassner R, Lepperdinger G. Osteocyte numbers decrease only in postcranial but not in cranial bones in humans of advanced age. Ann Anat (2019) 226:57–63. 10.1016/j.aanat.2019.06.006
    1. Stigler RG, Becker K, Kloss FR, Gassner R, Lepperdinger G. Long-lived murine osteocytes are embodied by craniofacial skeleton in young and old animals whereas they decrease in number in postcranial skeletons at older ages. Gerodontology (2018) 35:391–7. 10.1111/ger.12362
    1. Wood CL, Pajevic PD, Gooi JH. Osteocyte secreted factors inhibit skeletal muscle differentiation. Bone Rep (2017) 6:74–80. 10.1016/j.bonr.2017.02.007
    1. Battafarano G, Rossi M, Marampon F, Minisola S, Del Fattore A. Bone Control of Muscle Function. Int J Mol Sci (2020) 21:1–14. 10.3390/ijms21041178
    1. Bullon P, Goberna B, Guerrero JM, Segura JJ, Perez-Cano R, Martinez-Sahuquillo A. Serum, saliva, and gingival crevicular fluid osteocalcin: their relation to periodontal status and bone mineral density in postmenopausal women. J Periodontol (2005) 76:513–9. 10.1902/jop.2005.76.4.513
    1. Kerschan-Schindl K, Boschitsch E, Marculescu R, Gruber R, Pietschmann P. Bone turnover markers in serum but not in saliva correlate with bone mineral density. Sci Rep (2020) 10:11550. 10.1038/s41598-020-68442-z
    1. Betsy J, Ahmed JM, Mohasin AK, Mohammed A, Nabeeh AA. Diagnostic accuracy of salivary biomarkers of bone turnover in identifying patients with periodontitis in a Saudi Arabian population. J Dent Sci (2019) 14:269–76. 10.1016/j.jds.2019.03.002
    1. Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol (2019) 62:R167–85. 10.1530/JME-18-0176
    1. Pravitharangul A, Suttapreyasri S, Leethanakul C. Mandible and iliac osteoblasts exhibit different Wnt signaling responses to LMHF vibration. J Oral Biol Craniofac Res (2019) 9:355–9. 10.1016/j.jobcr.2019.09.005
    1. Chatzopoulos GS, Mansky KC, Lunos S, Costalonga M, Wolff LF. Sclerostin and WNT-5a gingival protein levels in chronic periodontitis and health. J Periodontal Res (2019) 54:555–65. 10.1111/jre.12659
    1. Tasdemir Z, Etoz M, Koy O, Soydan D, Alkan A. Masseter muscle thickness and elasticity in periodontitis. J Oral Sci (2020) 62:43–7. 10.2334/josnusd.18-0341
    1. de Vries TJ, Huesa C. The Osteocyte as a Novel Key Player in Understanding Periodontitis Through its Expression of RANKL and Sclerostin: a Review. Curr Osteoporos Rep (2019) 17:116–21. 10.1007/s11914-019-00509-x
    1. Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, et al. . Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption. Int J Mol Sci (2020) 21:1–24. 10.3390/ijms21145169
    1. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen (2020) 40:2. 10.1186/s41232-019-0111-3
    1. Dufresne SS, Dumont NA, Boulanger-Piette A, Fajardo VA, Gamu D, Kake-Guena SA, et al. . Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles. Am J Physiol Cell Physiol (2016) 310:C663–72. 10.1152/ajpcell.00285.2015
    1. Colaianni G, Storlino G, Sanesi L, Colucci S, Grano M. Myokines and Osteokines in the Pathogenesis of Muscle and Bone Diseases. Curr Osteoporos Rep (2020) 18:401–7. 10.1007/s11914-020-00600-8
    1. Sanz M, Del Castillo AM, Jepsen S, Gonzalez-Juanatey JR, D’Aiuto F, Bouchard P, et al. . Periodontitis and Cardiovascular Diseases. Consensus Report. Glob Heart (2020) 15:1. 10.5334/gh.400
    1. Keire P, Shearer A, Shefer G, Yablonka-Reuveni Z. Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol (2013) 946:431–68. 10.1007/978-1-62703-128-8_28
    1. Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, et al. . Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res (2010) 89:1293–8. 10.1177/0022034510378427

Source: PubMed

3
Se inscrever