The Effects of Virtual Reality Training on Function in Chronic Stroke Patients: A Systematic Review and Meta-Analysis

Han Suk Lee, Yoo Junk Park, Sun Wook Park, Han Suk Lee, Yoo Junk Park, Sun Wook Park

Abstract

Objective: The aim of this study was to perform a meta-analysis to examine whether virtual reality (VR) training is effective for lower limb function as well as upper limb and overall function in chronic stroke patients.

Methods: Three databases, OVID, PubMed, and EMBASE, were used to collect articles. The search terms used were "cerebrovascular accident (CVA)," "stroke", and "virtual reality". Consequently, twenty-one studies were selected in the second screening of meta-analyses. The PEDro scale was used to assess the quality of the selected studies.

Results: The total effect size for VR rehabilitation programs was 0.440. The effect size for upper limb function was 0.431, for lower limb function it was 0.424, and for overall function it was 0.545. The effects of VR programs on specific outcomes were most effective for improving muscle tension, followed by muscle strength, activities of daily living (ADL), joint range of motion, gait, balance, and kinematics.

Conclusion: The VR training was effective in improving the function in chronic stroke patients, corresponding to a moderate effect size. Moreover, VR training showed a similar effect for improving lower limb function as it did for upper limb function.

Figures

Figure 1
Figure 1
Study flow diagram of systematic review.
Figure 2
Figure 2
Funnel plot for publication bias.
Figure 3
Figure 3
Effect size of Virtual Reality-Based Rehabilitation Program.
Figure 4
Figure 4
Results of the meta-regression analysis by intervention duration (weeks).
Figure 5
Figure 5
Results of the meta-regression analysis by weekly intervention frequency.

References

    1. Gibbons E. M., Nicole Thomson A., De Noronha M., Joseph S. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke – a systematic review with metaanalysis. Topics in Stroke Rehabilitation. 2016;23(6):440–457. doi: 10.1080/10749357.2016.1183349.
    1. de Rooij I. J. M., van de Port I. G. L., Meijer J.-W. G. Effect of virtual reality training on balance and gait ability in patients with stroke: Systematic review and Meta-Analysis. Physical Therapy in Sport. 2016;96(12):1905–1918. doi: 10.2522/ptj.20160054.
    1. Iruthayarajah J., McIntyre A., Cotoi A., Macaluso S., Teasell R. The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Topics in Stroke Rehabilitation. 2017;24(1):68–79. doi: 10.1080/10749357.2016.1192361.
    1. Moreira M. C., Lima A. M. D. A., Ferraz K. M., Rodrigues M. A. B. Use of virtual reality in gait recovery among post stroke patients—a systematic literature review. Disability and Rehabilitation: Assistive Technology. 2013;8(5):357–362. doi: 10.3109/17483107.2012.749428.
    1. Weiss P. L., Kizony R., Feintuch U., Katz N. Virtual reality in neurorehabilitation. Textbook of Neural Repair and Rehabilitation. 2006;51(8):182–197.
    1. Chen L., Lo W. L. A., Mao Y. R., et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. BioMed Research International. 2016;2016:8. doi: 10.1155/2016/7309272.7309272
    1. Hwang S. Understanding of Meta Analysis. Seoul, Republic of Korea: Hakjisa; 2015.
    1. Shea B. J., Bouter L. M., Peterson J., et al. External validation of a measurement tool to assess systematic reviews (AMSTAR) PLoS ONE. 2007;2(12) doi: 10.1371/journal.pone.0001350.e1350
    1. Sterne J. A. C., Sutton A. J., Ioannidis J. P. A., et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. British Medical Journal. 2011;343(7818) doi: 10.1136/bmj.d4002.d4002
    1. Bang Y.-S., Son K. H., Kim H. J. Effects of virtual reality training using nintendo wii and treadmill walking exercise on balance and walking for stroke patients. Journal of Physical Therapy Science. 2016;28(11):3112–3115. doi: 10.1589/jpts.28.3112.
    1. Calabrò R. S., Naro A., Russo M., et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. Journal of NeuroEngineering and Rehabilitation. 2017;14(1) doi: 10.1186/s12984-017-0268-4.
    1. Cho K. H., Lee K. J., Song C. H. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. The Tohoku Journal of Experimental Medicine. 2012;228(1):69–74. doi: 10.1620/tjem.228.69.
    1. Cho K. H., Lee W. H. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: a randomized controlled trial. Gait & Posture. 2014;39(1):523–528. doi: 10.1016/j.gaitpost.2013.09.003.
    1. Da Silva Ribeiro N. M., Dominguez Ferraz D., Pedreira É., et al. Virtual rehabilitation via Nintendo Wii(R) and conventional physical therapy effectively treat post-stroke hemiparetic patients. Topics in Stroke Rehabilitation. 2015;22(4):299–305. doi: 10.1179/1074935714Z.0000000017.
    1. Fluet G. G., Merians A. S., Qiu Q., Rohafaza M., Van Wingerden A. M., Adamovich S. V. Does training with traditionally presented and virtually simulated tasks elicit differing changes in object interaction kinematics in persons with upper extremity hemiparesis? Topics in Stroke Rehabilitation. 2015;22(3):176–184. doi: 10.1179/1074935714Z.0000000008.
    1. In T., Lee K., Song C. Virtual reality reflection therapy improves balance and gait in patients with chronic stroke: Randomized controlled trials. Medical Science Monitor. 2016;22:4046–4053. doi: 10.12659/MSM.898157.
    1. Sung H. J., You S. H., Hallett M., et al. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Archives of Physical Medicine and Rehabilitation. 2005;86(11):2218–2223. doi: 10.1016/j.apmr.2005.04.015.
    1. Kim N., Park Y., Lee B. H. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke. Journal of Physical Therapy Science. 2015;27(3):655–658. doi: 10.1589/jpts.27.655.
    1. Kiper P., Agostini M., Luque-Moreno C., Tonin P., Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. BioMed Research International. 2014;2014:8. doi: 10.1155/2014/752128.752128
    1. Lee D., Lee M., Lee K., Song C. Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: A randomized controlled trial. Journal of Stroke and Cerebrovascular Diseases. 2014;23(6):1319–1326. doi: 10.1016/j.jstrokecerebrovasdis.2013.11.006.
    1. Lee H. Y., Kim Y. L., Lee S. M. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. Journal of Physical Therapy Science. 2015;27(6):1883–1888. doi: 10.1589/jpts.27.1883.
    1. Lee S., Kim Y., Lee B.-H. Effect of virtual reality-based bilateral upper extremity training on upper extremity function after stroke: a randomized controlled clinical trial. Occupational Therapy International. 2016;23(4):357–368. doi: 10.1002/oti.1437.
    1. Lloréns R., Gil-Gómez J.-A., Alcañiz M., Colomer C., Noé E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clinical Rehabilitation. 2015;29(3):261–268. doi: 10.1177/0269215514543333.
    1. Park J.-H., Park J.-H. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: A randomized controlled trial. Journal of Physical Therapy Science. 2016;28(3):811–815. doi: 10.1589/jpts.28.811.
    1. Park D.-S., Lee D.-G., Lee K., Lee G. Effects of virtual reality training using xbox kinect on motor function in stroke survivors: a preliminary study. Journal of Stroke and Cerebrovascular Diseases. 2017;26(10):2313–2319. doi: 10.1016/j.jstrokecerebrovasdis.2017.05.019.
    1. Sin H., Lee G. Additional virtual reality training using Xbox kinect in stroke survivors with hemiplegia. American Journal of Physical Medicine & Rehabilitation. 2013;92(10):871–880. doi: 10.1097/PHM.0b013e3182a38e40.
    1. Singh D. K. A., Mohd Nordin N. A., Aziz N. A. A., Lim B. K., Soh L. C. Effects of substituting a portion of standard physiotherapy time with virtual reality games among community-dwelling stroke survivors. BMC Neurology. 2013;13, article 199 doi: 10.1186/1471-2377-13-199.
    1. Song G. b., Park E. c. Effect of virtual reality games on stroke patients’ balance, gait, depression, and interpersonal relationships. Journal of Physical Therapy Science. 2015;27(7):2057–2060. doi: 10.1589/jpts.27.2057.
    1. Viana R. T., Laurentino G. E. C., Souza R. J. P., et al. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation. 2014;34(3):437–446. doi: 10.3233/nre-141065.
    1. Yom C., Cho H.-Y., Lee B. H. Effects of virtual reality-based ankle exercise on the dynamic balance, muscle tone, and gait of stroke patients. Journal of Physical Therapy Science. 2015;27(3):845–849. doi: 10.1589/jpts.27.845.
    1. Verhagen A. P., De Vet H. C. W., De Bie R. A., et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. Journal of Clinical Epidemiology. 1998;51(12):1235–1241. doi: 10.1016/S0895-4356(98)00131-0.
    1. Foley N. C., Teasell R. W., Bhogal S. K., Speechley M. R. Stroke rehabilitation evidence-based review: methodology. Topics in Stroke Rehabilitation. 2003;10(1):1–7. doi: 10.1310/y6tg-1kq9-ledq-64l8.
    1. Cohen J. Statistical Power Analysis for The Behavioral Sciences. Vol. 2. Hillsdale, NJ, USA: 1988.
    1. Hedges L. V., Olkin I. Statistical Methods for Meta-Analysis. Orlando, Fl, USA: Academic Press; 1985.
    1. Bernard R., Borokhovski E. Effect Size Calculation for Meta-Analysis. Oslo, Norway: Campbell Colloquium; 2009.
    1. Begg C. B., Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–1101. doi: 10.2307/2533446.
    1. Egger M., Smith G. D., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Tinga A. M., Visser-Meily J. M. A., van der Smagt M. J., van der Stigchel S., van Ee R., Nijboer T. C. W. Multisensory stimulation to improve low- and higher-level sensory deficits after stroke: a systematic review. Neuropsychology Review. 2016;26(1):73–91. doi: 10.1007/s11065-015-9301-1.
    1. Aminov A., Rogers J. M., Middleton S., Caeyenberghs K., Wilson P. H. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. Journal of NeuroEngineering and Rehabilitation. 2018;15(1) doi: 10.1186/s12984-018-0370-2.
    1. Li Z., Han X.-G., Sheng J., Ma S.-J. Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clinical Rehabilitation. 2015;30(5):432–440. doi: 10.1177/0269215515593611.
    1. Takeuchi N., Mori T., Suzukamo Y., Izumi S.-I. Modulation of excitability in the temporoparietal junction relieves virtual reality sickness. Cyberpsychology, Behavior, and Social Networking. 2018;21(6):381–387. doi: 10.1089/cyber.2017.0499.
    1. Laver K. E., Lange B., George S., Deutsch J. E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews. 2017;11:p. CD008349. doi: 10.1002/14651858.CD008349.pub4.
    1. Lee G. Effects of training using video games on the muscle strength, muscle tone, and activities of daily living of chronic stroke patients. Journal of Physical Therapy Science. 2013;25(5):595–597. doi: 10.1589/jpts.25.595.
    1. Kraemer W. J., Koziris L. P., Ratamess N. A., et al. Detraining produces minimal changes in physical performance and hormonal variables in recreationally strength-trained men. The Journal of Strength and Conditioning Research. 2002;16(3):373–382. doi: 10.1519/1533-4287(2002)016<0373:DPMCIP>;2. doi: 10.1519/00124278-200208000-00007.

Source: PubMed

3
Se inscrever