Delays and loss to follow-up before treatment of drug-resistant tuberculosis following implementation of Xpert MTB/RIF in South Africa: A retrospective cohort study

Helen Cox, Lindy Dickson-Hall, Norbert Ndjeka, Anja Van't Hoog, Alison Grant, Frank Cobelens, Wendy Stevens, Mark Nicol, Helen Cox, Lindy Dickson-Hall, Norbert Ndjeka, Anja Van't Hoog, Alison Grant, Frank Cobelens, Wendy Stevens, Mark Nicol

Abstract

Background: South Africa has a large burden of rifampicin-resistant tuberculosis (RR-TB), with 18,734 patients diagnosed in 2014. The number of diagnosed patients has increased substantially with the introduction of the Xpert MTB/RIF test, used for tuberculosis (TB) diagnosis for all patients with presumptive TB. Routine aggregate data suggest a large treatment gap (pre-treatment loss to follow-up) between the numbers of patients with laboratory-confirmed RR-TB and those reported to have started second-line treatment. We aimed to assess the impact of Xpert MTB/RIF implementation on the delay to treatment initiation and loss to follow-up before second-line treatment for RR-TB across South Africa.

Methods and findings: A nationwide retrospective cohort study was conducted to assess second-line treatment initiation and treatment delay among laboratory-diagnosed RR-TB patients. Cohorts, including approximately 300 sequentially diagnosed RR-TB patients per South African province, were drawn from the years 2011 and 2013, i.e., before and after Xpert implementation. Patients with prior laboratory RR-TB diagnoses within 6 mo and currently treated patients were excluded. Treatment initiation was determined through data linkage with national and local treatment registers, medical record review, interviews with health care staff, and direct contact with patients or household members. Additional laboratory data were used to track cases. National estimates of the percentage of patients who initiated treatment and time to treatment were weighted to account for the sampling design. There were 2,508 and 2,528 eligible patients in the 2011 and 2013 cohorts, respectively; 92% were newly diagnosed with RR-TB (no prior RR-TB diagnoses). Nationally, among the 2,340 and 2,311 new RR-TB patients in the 2011 and 2013 cohorts, 55% (95% CI 53%-57%) and 63% (95% CI 61%-65%), respectively, started treatment within 6 mo of laboratory receipt of their diagnostic specimen (p < 0.001). However, in 2013, there was no difference in the percentage of patients who initiated treatment at 6 mo between the 1,368 new RR-TB patients diagnosed by Xpert (62%, 95% CI 59%-65%) and the 943 diagnosed by other methods (64%, 95% CI 61%-67%) (p = 0.39). The median time to treatment decreased from 44 d (interquartile range [IQR] 20-69) in 2011 to 22 d (IQR 2-43) in 2013 (p < 0.001). In 2013, across the nine provinces, there were substantial variations in both treatment initiation (range 51%-73% by 6 mo) and median time to treatment (range 15-36 d, n = 1,450), and only 53% of the 1,448 new RR-TB patients who received treatment were recorded in the national RR-TB register. This retrospective study is limited by the lack of information to assess reasons for non-initiation of treatment, particularly pre-treatment mortality data. Other limitations include the use of names and dates of birth to locate patient-level data, potentially resulting in missed treatment initiation among some patients.

Conclusions: In 2013, there was a large treatment gap for RR-TB in South Africa that varied significantly across provinces. Xpert implementation, while reducing treatment delay, had not contributed substantially to reducing the treatment gap in 2013. However, given improved case detection with Xpert, a larger proportion of RR-TB patients overall have received treatment, with reduced delays. Nonetheless, strategies to further improve linkage to treatment for all diagnosed RR-TB patients are urgently required.

Conflict of interest statement

MN has received grant funds to his insitution for the evaluation of Xpert MTB/RIF, from the Foundation for Innovative New Diagnostics (FIND), National Institutes of Health of the USA and the Wellcome Trust. The remaining authors have declared that no competing interests exist.

Figures

Fig 1. Schematic diagram illustrating the stepwise…
Fig 1. Schematic diagram illustrating the stepwise process for follow-up of cohort patients.
EDR, EDR.Net; NHLS, National Health Laboratory Service; SL, second-line.
Fig 2. Flow diagram showing initial inclusion,…
Fig 2. Flow diagram showing initial inclusion, exclusions, and determination of newly and previously diagnosed rifampicin-resistant tuberculosis.
RR-TB, rifampicin-resistant tuberculosis; SL, second-line.
Fig 3. Time to treatment initiation from…
Fig 3. Time to treatment initiation from diagnostic specimen for new rifampicin-resistant tuberculosis patients from the 2011 and 2013 cohorts (p < 0.001).
Solid line: 2011 cohort; dashed line: 2013 cohort.
Fig 4. Distribution of time to treatment…
Fig 4. Distribution of time to treatment by cohort.
Fig 5. Time to treatment initiation from…
Fig 5. Time to treatment initiation from diagnostic specimen for new rifampicin-resistant tuberculosis patients in the 2013 cohort diagnosed with Xpert compared to other methods (p < 0.001).
Solid line: diagnosed with Xpert; dashed line: diagnosed by other method.

References

    1. World Health Organization. Global tuberculosis report 2015. WHO/HTM/TB/2015.22. Geneva: World Health Organization; 2015.
    1. Dowdy DW, Chaisson RE, Maartens G, Corbett EL, Dorman SE. Impact of enhanced tuberculosis diagnosis in South Africa: a mathematical model of expanded culture and drug susceptibility testing. Proc Natl Acad Sci U S A. 2008;105(32):11293–8. 10.1073/pnas.0800965105
    1. Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet. 2011;377(9776):1495–505. 10.1016/S0140-6736(11)60438-8
    1. Harris RC, Grandjean L, Martin LJ, Miller AJ, Nkang JE, Allen V, et al. The effect of early versus late treatment initiation after diagnosis on the outcomes of patients treated for multidrug-resistant tuberculosis: a systematic review. BMC Infect Dis. 2016;16(1):193.
    1. Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA. Population health impact and cost-effectiveness of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic simulation and economic evaluation. PLoS Med. 2012;9(11):e1001347 10.1371/journal.pmed.1001347
    1. Cox H, Dickson-Hall L, Ndjeka N, van’t Hoog A, Grant AD, Cobelens F, et al. Data from: Delays and loss to follow-up before treatment of drug-resistant tuberculosis following implementation of Xpert MTB/RIF in South Africa: a retrospective cohort study. Dryad Digital Repository.
    1. South African National AIDS Council. National strategic plan (NSP) for HIV and AIDS, TB and STIs 2012–2016. Pretoria: South African National AIDS Council; 2013.
    1. Cox H, Mbhele S, Mohess N, Whitelaw A, Muller O, Zemanay W, et al. Impact of Xpert MTB/RIF implementation for TB diagnosis in a high TB and HIV prevalence primary care clinic in South Africa: a pragmatic randomised trial. PLoS Med. 2014;11(11):e1001760 10.1371/journal.pmed.1001760
    1. Churchyard GJ, Stevens WS, Mametja LD, McCarthy KM, Chihota V, Nicol MP, et al. Xpert MTB/RIF versus sputum microscopy as the initial diagnostic test for tuberculosis: a cluster-randomised trial embedded in South African roll-out of Xpert MTB/RIF. Lancet Glob Health. 2015;3(8):e450–7. 10.1016/S2214-109X(15)00100-X
    1. Van Den Handel T, Hampton KH, Sanne I, Stevens W, Crous R, Van Rie A. The impact of Xpert((R)) MTB/RIF in sparsely populated rural settings. Int J Tuberc Lung Dis. 2015;19(4):392–8. 10.5588/ijtld.14.0653
    1. World Health Organization. Global tuberculosis control: WHO report 2012. Geneva: World Health Organization; 2012.
    1. South African National Department of Health. Management of drug-resistant tuberculosis: policy guidelines. Pretoria: South African National Department of Health; 2011.
    1. Naidoo P, du Toit E, Dunbar R, Lombard C, Caldwell J, Detjen A, et al. A comparison of multidrug-resistant tuberculosis treatment commencement times in MDRTBPlus line probe assay and Xpert(R) MTB/RIF-based algorithms in a routine operational setting in Cape Town. PLoS ONE. 2014;9(7):e103328 10.1371/journal.pone.0103328
    1. Cox H, Daniels J, Muller O, Nicol M, Cox V, Van Cutsem G, et al. Impact of decentralized care and the Xpert MTB/RIF test on rifampicin-resistant tuberculosis treatment initiation in Khayelitsha, South Africa. Open Forum Infect Dis. 2015;2(1):ofv014 10.1093/ofid/ofv014
    1. South African National Department of Health, World Health Organization. Towards universal health coverage: report of the evaluation of South Africa drug resistant TB programme and its implementation of the policy framework on decentralised and deinstitutionalised management of multidrug resistant TB. Pretoria: South African National Department of Health; 2016.
    1. Loveday M, Wallengren K, Voce A, Margot B, Reddy T, Master I, et al. Comparing early treatment outcomes of MDR-TB in decentralised and centralised settings in KwaZulu-Natal, South Africa. Int J Tuberc Lung Dis. 2012;16(2):209–15. 10.5588/ijtld.11.0401
    1. Gandhi NR, Andrews JR, Brust JC, Montreuil R, Weissman D, Heo M, et al. Risk factors for mortality among MDR- and XDR-TB patients in a high HIV prevalence setting. Int J Tuberc Lung Dis. 2012;16(1):90–7. 10.5588/ijtld.11.0153
    1. Dodd PJ, Sismanidis C, Seddon JA. Global burden of drug-resistant tuberculosis in children: a mathematical modelling study. Lancet Infect Dis. 2016;16(10):1193–201. 10.1016/S1473-3099(16)30132-3
    1. Dreyer A, Omar S, Nanoo A, Koornhof H, Ismail N. Public health action to reduce the burden of rifampicin resistant tuberculosis. Communicable Dis Surveill Bull. 2015;13(2):47–51. Johannesburg: National Institute for Infectious Diseases.

Source: PubMed

3
Se inscrever