Efficacy and safety of intramuscular administration of allogeneic adipose tissue derived and expanded mesenchymal stromal cells in diabetic patients with critical limb ischemia with no possibility of revascularization: study protocol for a randomized controlled double-blind phase II clinical trial (The NOMA Trial)

Barbara Soria-Juan, Mariano Garcia-Arranz, Lucía Llanos Jiménez, César Aparicio, Alejandro Gonzalez, Ignacio Mahillo Fernandez, Luis Riera Del Moral, Lukasz Grochowicz, Enrique J Andreu, Pedro Marin, Gregorio Castellanos, Jose Maria Moraleda, Ana Maria García-Hernández, Francisco S Lozano, Fermin Sanchez-Guijo, Eva María Villarón, Miriam Lopez Parra, Rosa María Yañez, Antonio de la Cuesta Diaz, Juan Rigoberto Tejedo, Francisco J Bedoya, Franz Martin, Manuel Miralles, Lourdes Del Rio Sola, María Eugenia Fernández-Santos, José Manuel Ligero, Francisco Morant, Luis Hernández-Blasco, Etelvina Andreu, Abdelkrim Hmadcha, Damian Garcia-Olmo, Bernat Soria, Barbara Soria-Juan, Mariano Garcia-Arranz, Lucía Llanos Jiménez, César Aparicio, Alejandro Gonzalez, Ignacio Mahillo Fernandez, Luis Riera Del Moral, Lukasz Grochowicz, Enrique J Andreu, Pedro Marin, Gregorio Castellanos, Jose Maria Moraleda, Ana Maria García-Hernández, Francisco S Lozano, Fermin Sanchez-Guijo, Eva María Villarón, Miriam Lopez Parra, Rosa María Yañez, Antonio de la Cuesta Diaz, Juan Rigoberto Tejedo, Francisco J Bedoya, Franz Martin, Manuel Miralles, Lourdes Del Rio Sola, María Eugenia Fernández-Santos, José Manuel Ligero, Francisco Morant, Luis Hernández-Blasco, Etelvina Andreu, Abdelkrim Hmadcha, Damian Garcia-Olmo, Bernat Soria

Abstract

Background: Chronic lower limb ischemia develops earlier and more frequently in patients with type 2 diabetes mellitus. Diabetes remains the main cause of lower-extremity non-traumatic amputations. Current medical treatment, based on antiplatelet therapy and statins, has demonstrated deficient improvement of the disease. In recent years, research has shown that it is possible to improve tissue perfusion through therapeutic angiogenesis. Both in animal models and humans, it has been shown that cell therapy can induce therapeutic angiogenesis, making mesenchymal stromal cell-based therapy one of the most promising therapeutic alternatives. The aim of this study is to evaluate the feasibility, safety, and efficacy of cell therapy based on mesenchymal stromal cells derived from adipose tissue intramuscular administration to patients with type 2 diabetes mellitus with critical limb ischemia and without possibility of revascularization.

Methods: A multicenter, randomized double-blind, placebo-controlled trial has been designed. Ninety eligible patients will be randomly assigned at a ratio 1:1:1 to one of the following: control group (n = 30), low-cell dose treatment group (n = 30), and high-cell dose treatment group (n = 30). Treatment will be administered in a single-dose way and patients will be followed for 12 months. Primary outcome (safety) will be evaluated by measuring the rate of adverse events within the study period. Secondary outcomes (efficacy) will be measured by assessing clinical, analytical, and imaging-test parameters. Tertiary outcome (quality of life) will be evaluated with SF-12 and VascuQol-6 scales.

Discussion: Chronic lower limb ischemia has limited therapeutic options and constitutes a public health problem in both developed and underdeveloped countries. Given that the current treatment is not established in daily clinical practice, it is essential to provide evidence-based data that allow taking a step forward in its clinical development. Also, the multidisciplinary coordination exercise needed to develop this clinical trial protocol will undoubtfully be useful to conduct academic clinical trials in the field of cell therapy in the near future.

Trial registration: ClinicalTrials.gov NCT04466007 . Registered on January 07, 2020. All items from the World Health Organization Trial Registration Data Set are included within the body of the protocol.

Keywords: Adipose-derived mesenchymal stromal cells; Advanced therapy medicinal products; Cell therapy; Critical limb ischemia; Diabetes mellitus; Phase II clinical trial; Randomized.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart: 90 patients will be recruited in the study and randomly allocated to three groups (high-dose group = 30; low-dose group = 30; control group = 30). The assessment will be done 24 h and 3, 6, and 12 months, respectively
Fig. 2
Fig. 2
Cell therapy product flowchart. From GMP laboratory to the patient. MCB, master cell bank; WCB, working cell bank; MSC, mesenchymal stromal cells. Ad-MSC are isolated from the adipose tissue sample and cultured at two passages until reaching a minimum dose of 250 × 106 cells. Characterization of the cells and quality controls are established during the whole process. When a study subject is assigned to active treatment group, the sponsor notifies the assigned WCB laboratory to thaw and culture the cells in one passage. The batch is then packaged, labeled, and sent to the pharmacy service of the intended hospital. Manufacture process has been authorized by the Spanish competent authority (AEMPS), PEI number 15-103 Version 4:7/07/2019.
Fig. 3
Fig. 3
MCB and WCB laboratories. Different laboratories have been assigned to the hospitals. MCB, master cell bank; WCB, working cell bank; NUC, Navarra University Hospital; SUH, Salamanca University Hospital; GMGUH, Gregorio Marañon General University Hospital; VAUCH, Virgen de la Arrixaca University Clinical Hospital; LFUH, La Fe University Hospital; VCUH, Valladolid Clinical University Hospital; LPUH, La Paz University Hospital; VE-CRH, Queen Victoria Eugenia-Cruz Roja Hospital; FJD, Jimenez Diaz Foundation University Hospital; HGUA, General University Hospital Alicante
Fig. 4
Fig. 4
Once the targeted muscular injection points are selected (upper panel), repeated administrations of cell therapy are directly, easily, and minimally invasive administered into the lower part of the limb (lower panel)

References

    1. Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. Trans Atlantic Inter-Society Consensus (TASC) J Vasc Surg. 2000;31(1 Pt 2):S1-S1-296.
    1. Albright RH, Manohar NB, Murillo JF, Kengne LAM, Delgado-Hurtado JJ, Diamond ML, Acciani AL, Fleischer AE. Effectiveness of multidisciplinary care teams in reducing major amputation rate in adults with diabetes: a systematic review & meta-analysis. Diabetes Res Clin Pract. 2020;161:107996. doi: 10.1016/j.diabres.2019.107996.
    1. Nativel M, Potier L, Alexandre L, et al. Lower extremity arterial disease in patients with diabetes: a contemporary narrative review. Cardiovasc Diabetol. 2018;17(1):138. doi: 10.1186/s12933-018-0781-1.
    1. Saha SP, Whayne TF, Jr, Mukherjee D. Current evidence for antithrombotic therapy after peripheral vascular interventions. Curr Vasc Pharmacol. 2013;11(4):507–513. doi: 10.2174/1570161111311040014.
    1. Isner JM, Rosenfield K. Redefining the treatment of peripheral artery disease. Role of percutaneous revascularization. Circulation. 1993;88(4 Pt 1):1534–1557. doi: 10.1161/01.CIR.88.4.1534.
    1. Ramsey SD, Newton K, Blough D, McCulloch DK, Sandhu N, Wagner EH. Patient-level estimates of the cost of complications in diabetes in a managed-care population. PharmacoEconomics. 1999;16(3):285–295. doi: 10.2165/00019053-199916030-00005.
    1. Soria-Juan B, Soria-Juan B, Escacena N, Capilla-González V, Aguilera Y, Llanos L, Tejedo JR, Bedoya FJ, Juan V, De la Cuesta A, Ruiz-Salmerón R, Andreu E, Grochowicz L, Prósper F, Sánchez-Guijo F, Lozano FS, Miralles M, Del Río-Solá L, Castellanos G, Moraleda JM, Sackstein R, García-Arranz M, García-Olmo D, Martín F, Hmadcha A, Soria B, Collaborative Working Group “Noma Project Team” Cost-effective, safe, and personalized cell therapy for critical limb ischemia in type 2 diabetes mellitus. Front Immunol. 2019;10:1151. doi: 10.3389/fimmu.2019.01151.
    1. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348(9024):370–374. doi: 10.1016/s0140-6736(96)03361-2.
    1. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998;97(12):1114–1123. doi: 10.1161/01.cir.97.12.1114.
    1. Kusumanto YH, Weel V, Mulder NH, Smit AJ, Dungen JJ, Hooymans AM, et al. Treatment with intra muscular (IM) vascular endothelial growth factor (VEGF) gene compared with placebo for patients with diabetes mellitus and critical limb ischemia (CLI), a double blind randomized trial. Hum Gene Ther. 2006;17(6):683–691. doi: 10.1089/hum.2006.17.683.
    1. Comerota AJ, Throm RC, Miller KA, Henry T, Chronos N, Laird J, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg. 2002;35(5):930. doi: 10.1067/mva.2002.123677.
    1. Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther. 1996;7(8):959–988. doi: 10.1089/hum.1996.7.8-959.
    1. Ho HK, Jang JJ, Kaji S, Spektor G, Fong A, Yang P, et al. Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in ischemia. Circulation. 2004;109(10):1314. doi: 10.1161/01.CIR.0000118465.36018.2D.
    1. Rajagopalan S, Mohler ER, 3rd, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003;108(16):1933–1933-8. doi: 10.1161/01.CIR.0000093398.16124.29.
    1. Creager MA, Olin JW, Belch JJF, Moneta GL, Henry TD, Rajagopalan S, et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124(16):1765–1773. doi: 10.1161/CIRCULATIONAHA.110.009407.
    1. Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC, Ferreira-Maldent N, Gallino A, Wyatt MG, Wijesinghe LD, Fusari M, Stephan D, Emmerich J, Pompilio G, Vermassen F, Pham E, Grek V, Coleman M, Meyer F, TALISMAN 201 investigators Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008;16(5):972–978. doi: 10.1038/mt.2008.33.
    1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–967. doi: 10.1126/science.275.5302.964.
    1. Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Intern Med. 2002;136(1):54–71. doi: 10.7326/0003-4819-136-1-200201010-00011.
    1. Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol. 2016;76:1–10. doi: 10.1016/j.vph.2015.08.005.
    1. Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev. 2015;26(3):311–327. doi: 10.1016/j.cytogfr.2014.11.009.
    1. Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation. 2010;122(5):517–526. doi: 10.1161/CIRCULATIONAHA.109.881441.
    1. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–435. doi: 10.1016/S0140-6736(02)09670-8.
    1. Saigawa T, Kato K, Ozawa T, Toba K, Makiyama Y, Minagawa S, Hashimoto S, Furukawa T, Nakamura Y, Hanawa H, Kodama M, Yoshimura N, Fujiwara H, Namura O, Sogawa M, Hayashi J, Aizawa Y. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J. 2004;68(12):1189–1193. doi: 10.1253/circj.68.1189.
    1. Miyamoto K, Nishigami K, Nagaya N, Akutsu K, Chiku M, Kamei M, et al. Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans. Circulation. 2006;114(24):2679–2684. doi: 10.1161/CIRCULATIONAHA.106.644203.
    1. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Pérez-Camacho I, Marcos-Sánchez F, Hmadcha A, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20(10):1629–1639. doi: 10.3727/096368910X0177.
    1. Cañizo MC, Lozano F, González-Porras JR, Barros M, López-Holgado N, Briz E, et al. Peripheral endothelial progenitor cells (CD133 +) for therapeutic vasculogenesis in a patient with critical limb ischemia. One year follow-up. Cytotherapy. 2007;9(1):99–102. doi: 10.1080/14653240601034708.
    1. Abdelkrim H, Juan D-B, Jane W, Mohamed A, Bernat S. The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med. 2009;13(8a):1464–1435. doi: 10.1111/j.1582-4934.2009.00837.x.
    1. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2003;5:485–489. doi: 10.1080/14653240310003611.
    1. Ferrer-Lorente R, Bejar MT, Tous M, Vilahur G, Badimon L. Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia. 2014;57:246–256. doi: 10.1007/s00125-013-3081-z.
    1. Minteer DM, Young MT, Lin YC, Over PJ, Rubin JP, Gerlach JC, et al. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications. J Tissue Eng. 2015;6:2041731415579215. doi: 10.1177/2041731415579215.
    1. Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, et al. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 2014;5:79. doi: 10.1186/scrt468.
    1. Riera del Moral L, Salazar Álvarez A, StefanovKiuri S, Tong H, Riera de Cubas L, García-Olmo D, García-Arranz M. Phase Ib open clinical trial to assess the safety of autologous mesenchymal stem cells for the treatment of non revascularizable critical lower limb ischemia. J Stem Cell Res Ther. 2017;7:6.
    1. Hardman RL, Jazaeri O, Yi J, Smith M, Gupta R. Overview of classification systems in peripheral artery disease. Semin Intervent Radiol. 2014;31(4):378–388. doi: 10.1055/s-0034-1393976.
    1. Mills JL, Society for Vascular Surgery Lower Extremity Guidelines Committee et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI) J Vasc Surg. 2014;59(1):220–34.e1-2. doi: 10.1016/j.jvs.2013.08.003.
    1. Weaver ML, et al. The SVS WIfI classification system predicts wound healing better than direct angiosome perfusion in diabetic foot wounds. J Vasc Surg. 2018;68:1473–1481. doi: 10.1016/j.jvs.2018.01.060.
    1. Rac-Albu M, Iliuta L, Guberna SM, Sinescu C. The role of ankle-brachial index for predicting peripheral arterial disease. Maedica (Bucur). 2014;9(3):295–302.
    1. Ware J, Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–233. doi: 10.1097/00005650-199603000-00003.
    1. Morgan MB, Crayford T, Murrin B, Fraser SC. Developing the vascular quality of life questionnaire: a new disease-specific quality of life measure for use in lower limb ischemia. J Vasc Surg. 2001;33(4):679–687. doi: 10.1067/mva.2001.112326.
    1. Gupta SK. Intention-to-treat concept: a review. Perspect Clin. Res. 2011;2(3):109–112. doi: 10.4103/2229-3485.83221.
    1. Gensler SW, Haimovici H, Hoffert P, Steinman C, Beneventano TC. Study of vascular lesions in diabetic, nondiabetic patients: clinical, arteriographic, and surgical considerations. Arch Surg. 1965;91(4):617–622. doi: 10.1001/archsurg.1965.01320160071016.
    1. Ciavarella A, Silletti A, Mustacchio A, Gargiulo M, Galaverni MC, Stella A, et al. Angiographic evaluation of the anatomic pattern of arterial obstructions in diabetic patients with critical limb ischaemia. Diabetes Metab. 1993;19(6):586–589.
    1. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–e654. doi: 10.1161/CIRCULATIONAHA.106.174526.
    1. Escacena N, Quesada-Hernández E, Capilla-Gonzalez V, Soria B, Hmadcha A. Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells. Stem Cells Int. 2015;2015:1–12. doi: 10.1155/2015/895714.
    1. Acosta L, Hmadcha A, Escacena N, Pérez-Camacho I, de la Cuesta A, Ruiz-Salmeron R, et al. Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. Diabetes. 2013;62(12):4266–4269. doi: 10.2337/db13-0896.

Source: PubMed

3
Se inscrever