Intervention with inulin prior to and during sanative therapy to further support periodontal health: study protocol for a randomized controlled trial

Carly A R Zanatta, Peter C Fritz, Elena M Comelli, Wendy E Ward, Carly A R Zanatta, Peter C Fritz, Elena M Comelli, Wendy E Ward

Abstract

Background: Periodontal disease is a chronic state of inflammation that can destroy the supporting tissues around the teeth, leading to the resorption of alveolar bone. The initial strategy for treating periodontal disease is non-surgical sanative therapy (ST). Periodontal disease can also induce dysbiosis in the gut microbiota and contribute to low-grade systemic inflammation. Prebiotic fibers such as inulin can selectively alter the intestinal microbiota and support homeostasis by improving gut barrier functions and preventing inflammation. Providing an inulin supplement prior to and post-ST may influence periodontal health while providing insight into the complex relationship between periodontal disease and the gut microbiota. The primary objective is to determine if inulin is more effective than the placebo at improving clinical periodontal outcomes including probing depth (PD) and bleeding on probing (BOP). Secondary objectives include determining the effects of inulin supplementation pre- and post-ST on salivary markers of inflammation and periodontal-associated pathogens, as these outcomes reflect more rapid changes that can occur.

Methods: We will employ a single-center, randomized, double-blind, placebo-controlled study design and recruit and randomize 170 participants who are receiving ST to manage the periodontal disease to the intervention (inulin) or placebo (maltodextrin) group. A pilot study will be embedded within the randomized controlled trial using the first 48 participants to test the feasibility for the larger, powered trial. The intervention period will begin 4 weeks before ST through to their follow-up appointment at 10 weeks post-ST. Clinical outcomes of periodontal disease including the number of sites with PD ≥ 4 mm and the presence of BOP will be measured at baseline and post-ST. Salivary markers of inflammation, periodontal-associated pathogens, body mass index, and diet will be measured at baseline, pre-ST (after 4 weeks of intervention), and post-ST (after 14 weeks of intervention).

Discussion: We expect that inulin will enhance the positive effect of ST on the management of periodontal disease. The results of the study will provide guidance regarding the use of prebiotics prior to and as a supportive adjunct to ST for periodontal health.

Trial registration: ClinicalTrials.gov NCT04670133 . Registered on 17 December 2020.

Keywords: Gut microbiome; Inulin; Periodontal disease; Prebiotics; Sanative therapy.

Conflict of interest statement

EMC has received research support from Lallemand Health Solutions and Ocean Spray and has received consultant fees or speaker or travel support from Danone, Nestlé, and Lallemand Health Solutions. The other authors declare they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Possible connection linking periodontal disease, obesity, gut dysbiosis, and low-grade inflammation. Prebiotics may restore the gut microbiome to a state of homeostasis to disrupt the connection
Fig. 2
Fig. 2
Study design flowchart

References

    1. Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000. 2020;83:26–39. doi: 10.1111/prd.12297.
    1. Haffajee AD, Cugini MA, Dibart S, Smith C, Kent RL, Jr, Socransky SS. The effect of SRP on the clinical and microbiological parameters of periodontal diseases. J Clin Periodontol. 1997;24(5):324–334. doi: 10.1111/j.1600-051x.1997.tb00765.x.
    1. Dodington DW, Fritz PC, Sullivan PJ, Ward WE. Higher Intakes of Fruits and Vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA Are Positively Associated with Periodontal Healing after Nonsurgical Periodontal Therapy in Nonsmokers but Not in Smokers. J Nutr. 2015;145(11):2512–2519. doi: 10.3945/jn.115.2115241.
    1. Fleischer HC, Mellonig JT, Brayer WK, Gray JL, Barnett JD. Scaling and root planing efficacy in multirooted teeth. J Periodontol. 1989;60(7):402–409. doi: 10.1902/jop.1989.60.7.402.
    1. Rabbani GM, Ash MM, Jr, Caffesse RG. The effectiveness of subgingival scaling and root planing in calculus removal. J Periodontol. 1981;52(3):119–123. doi: 10.1902/jop.1981.52.3.119.
    1. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, Greenwell H, Herrera D, Kao RT, Kebschull M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;45(Suppl 20):S162–S170. doi: 10.1111/jcpe.12946.
    1. Lang NP, Adler R, Joss A, Nyman S. Absence of bleeding on probing. An indicator of periodontal stability. J Clin Periodontol. 1990;17(10):714–721. doi: 10.1111/j.1600-051X.1990.tb01059.x.
    1. Saygun I, Nizam N, Keskiner I, Bal V, Kubar A, Açıkel C, Serdar M, Slots J. Salivary infectious agents and periodontal disease status. J Periodontal Res. 2011;46(2):235–239. doi: 10.1111/j.1600-0765.2010.01335.x.
    1. von Troil-Lindén B, Torkko H, Alaluusua S, Jousimies-Somer H, Asikainen S. Salivary Levels of Suspected Periodontal Pathogens in Relation to Periodontal Status and Treatment. J Dent Res. 1995;74(11):1789–1795. doi: 10.1177/00220345950740111201.
    1. Walker MY, Pratap S, Southerland JH, Farmer-Dixon CM, Lakshmyya K, Gangula PR. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide. 2018;73:81–88. doi: 10.1016/j.niox.2017.06.003.
    1. Lourenςo TGB, Spencer SJ, Alm EJ, Colombo APV. Defining the gut microbiota in individuals with periodontal diseases: an exploratory study. J Oral Microbiol. 2018;10(1):1487741. doi: 10.1080/20002297.2018.1487741.
    1. Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, et al. Oral Administration of P. gingivalis Induces Dysbiosis of Gut Microbiota and Impaired Barrier Function Leading to Dissemination of Enterobacteria to the Liver. PLoS One. 2015;10:1–15.
    1. Song IS, Han K, Park YM, Ji S, Jun SH, Ryu JJ, Park JB. Severe Periodontitis Is Associated with Insulin Resistance in Non-abdominal Obese Adults. J Clin Endocrinol Metab. 2016;101(11):4251–4259. doi: 10.1210/jc.2016-2061.
    1. Cecoro G, Annunziata M, Iuorio MT, Nastri L, Guida L. Periodontitis, Low-Grade Inflammation and Systemic Health: A Scoping Review. Medicina (Kaunas) 2020;56(6):272. doi: 10.3390/medicina56060272.
    1. Nagpal R, Kumar M, Yadav AK, Hemalatha R, Yadav H, Marotta F, Yamashiro Y. Gut microbiota in health and disease: an overview focused on metabolic inflammation. Benef Microbes. 2016;7(2):181–194. doi: 10.3920/bm2015.0062.
    1. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi: 10.1038/nrgastro.2017.75.
    1. Kleessen B, Hartmann L, Blaut M. Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr. 2001;86(2):291–300. doi: 10.1079/bjn2001403.
    1. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17(12):1519–1528. doi: 10.3748/wjg.v17.i12.1519\.
    1. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–1103. doi: 10.1136/gut.2008.165886.
    1. Fang W, Xue H, Chen X, Chen K, Ling W. Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice. J Nutr. 2019;149(5):747–754. doi: 10.1093/jn/nxy324.
    1. Nielsen SJ, Trak-Fellermeier MA, Joshipura K, Dye BA. Dietary Fiber Intake Is Inversely Associated with Periodontal Disease among US Adults. J Nutr. 2016;146(12):2530–2536. doi: 10.3945/jn.116.237065.
    1. Schwartz N, Kaye EK, Nunn ME, Spiro A, 3rd, Garcia RI. High-fiber foods reduce periodontal disease progression in men aged 65 and older: the Veterans Affairs normative aging study/Dental Longitudinal Study. J Am Geriatr Soc. 2012;60(4):676–683. doi: 10.1111/j.1532-5415.2011.03866.x.
    1. Merchant AT, Pitiphat W, Franz M, Joshipura KJ. Whole-grain and fiber intakes and periodontitis risk in men. Am J Clin Nutr. 2006;83(6):1395–1400. doi: 10.1093/ajcn/83.6.1395.
    1. Kondo K, Ishikado A, Morino K, Nishio Y, Ugi S, Kajiwara S, Kurihara M, Iwakawa H, Nakao K, Uesaki S, Shigeta Y, Imanaka H, Yoshizaki T, Sekine O, Makino T, Maegawa H, King GL, Kashiwagi A. A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study. Nutr Res. 2014;34(6):491–498. doi: 10.1016/j.nutres.2014.06.001.
    1. Bonnema AL, Kolberg LW, Thomas W, Slavin JL. Gastrointestinal tolerance of chicory inulin products. J Am Diet Assoc. 2010;110(6):865–868. doi: 10.1016/j.jada.2010.03.025.
    1. Bruhwyler J, Carreer F, Demanet E, Jacobs H. Digestive tolerance of inulin-type fructans: a double-blind, placebo-controlled, cross-over, dose-ranging, randomized study in healthy volunteers. Int J Food Sci Nutr. 2009;60(2):165–175. doi: 10.1080/09637480701625697.
    1. Sparrow TV, Dodington DW, Yumol JL, Fritz PC, Ward WE. Higher intakes of flavonoids are associated with lower salivary IL-1β and maintenance of periodontal health 3-4 years after scaling and root planing. J Clin Periodontol. 2020;47(4):461–469. doi: 10.1111/jcpe.13263.
    1. Paqué PN, Herz C, Jenzer JS, Wiedemeier DB, Attin T, Bostanci N, Belibasakis GN, Bao K, Körner P, Fritz T, Prinz J, Schmidlin PR, Thurnheer T, Wegehaupt FJ, Mitsakakis K, Peham JR. Microbial Analysis of Saliva to Identify Oral Diseases Using a Point-of-Care Compatible qPCR Assay. J Clin Med. 2020;9(9):2945. doi: 10.3390/jcm9092945.
    1. Beaudette JR, Fritz PC, Sullivan PJ, Piccini A, Ward WE. Patients undergoing periodontal procedures commonly use dietary supplements: A consideration in the design of intervention trials. Clin Exp Dent Res. 2020. 10.1002/cre2.328.
    1. Levy E, Xanthou G, Petrakou E, Zacharioudaki V, Tsatsanis C, Fotopoulos S, Xanthou M. Distinct roles of TLR4 and CD14 in LPS-induced inflammatory responses of neonates. Pediatr Res. 2009;66(2):179–184. doi: 10.1203/PDR.0b013e3181a9f41b.
    1. Nishida N, Tanaka M, Hayashi N, Nagata H, Takeshita T, Nakayama K, Morimoto K, Shizukuishi S. Determination of smoking and obesity as periodontitis risks using the classification and regression tree method. J Periodontol. 2005;76(6):923–928. doi: 10.1902/jop.2005.76.6.923.
    1. Akram Z, Safii SH, Vaithilingam RD, Baharuddin NA, Javed F, Vohra F. Efficacy of non-surgical periodontal therapy in the management of chronic periodontitis among obese and non-obese patients: a systematic review and meta-analysis. Clin Oral Investig. 2016;20(5):903–914. doi: 10.1007/s00784-016-1793-4.
    1. Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine. 2006;29(1):81–90. doi: 10.1385/endo:29:1:81.
    1. Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr. 2014;65(1):117–123. doi: 10.3109/09637486.2013.836738.
    1. Sedghi L, Byron C, Jennings R, Chlipala GE, Green SJ, Silo-Suh L. Effect of Dietary Fiber on the Composition of the Murine Dental Microbiome. Dent J (Basel). 2019;7(2):58. doi: 10.3390/dj7020058.

Source: PubMed

3
Se inscrever