Effect of intraoperative lidocaine on anesthetic consumption, and bowel function, pain intensity, analgesic consumption and hospital stay after breast surgery

Soo Joo Choi, Myung Hee Kim, Hui Yeon Jeong, Jeong Jin Lee, Soo Joo Choi, Myung Hee Kim, Hui Yeon Jeong, Jeong Jin Lee

Abstract

Background: Perioperative lidocaine infusion improves postoperative outcomes, mostly after abdominal and urologic surgeries. Knowledge of the effect of lidocaine on peripheral surgeries is limited. Presently, we investigated whether intraoperative lidocaine infusion reduced anesthetic consumption, duration of ileus, pain intensity, analgesic consumption and hospital stay after breast plastic surgeries.

Methods: Sixty female patients, aged 20-60 years, enrolled in this prospective study were randomly and equally divided to two groups. One group (n = 30) received a 1.5 mg/kg bolus of lidocaine approximately 30 min before incision followed by continuous infusion of lidocaine (1.5 mg/kg/h) until skin closure (lidocaine group). The other group (n = 30) was untreated (control group). Balanced inhalation (sevoflurane) anesthesia and multimodal postoperative analgesia were standardized. End tidal sevoflurane concentration during surgery, time to the first flatus and defecation, visual analog pain scale (0-10), analgesic consumption and associated side effects at 24, 48, and 72 h after surgery, hospital stay, and patient's general satisfaction were assessed.

Results: Compared to the control group, intraoperative lidocaine infusion reduced by 5% the amount of sevoflurane required at similar bispectral index (P = 0.014). However, there were no significant effects of lidocaine regarding the return of bowel function, postoperative pain intensity, analgesic sparing and side effects at all time points, hospital stay, and level of patient's satisfaction for pain control.

Conclusions: Low dose intraoperative lidocaine infusion offered no beneficial effects on return of bowel function, opioid sparing, pain intensity and hospital stay after various breast plastic surgeries.

Keywords: Analgesic consumption; Anesthetic consumption; Bowel function; Hospital stay; Intravenous lidocaine; Pain score.

References

    1. Groudine SB, Fisher HA, Kaufman RP, Jr, Patel MK, Wilkins LJ, Mehta SA, et al. Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth Analg. 1998;86:235–239.
    1. Wilson JP. Postoperative motility of the large intestine in man. Gut. 1975;16:689–692.
    1. Harvey KP, Adair JD, Isho M, Robinson R. Can intravenous lidocaine decrease postsurgical ileus and shorten hospital stay in elective bowel surgery? A pilot study and literature review. Am J Surg. 2009;198:231–236.
    1. Herroeder S, Pecher S, Schonherr ME, Kaulitz G, Hahnenkamp K, Friess H, et al. Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial. Ann Surg. 2007;246:192–200.
    1. Kuo CP, Jao SW, Chen KM, Wong CS, Yeh CC, Sheen MJ, et al. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br J Anaesth. 2006;97:640–646.
    1. White PF. The role of non-opioid analgesic techniques in the management of pain after ambulatory surgery. Anesth Analg. 2002;94:577–585.
    1. Koppert W, Weigand M, Neumann F, Sittl R, Schuettler J, Schmelz M, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg. 2004;98:1050–1055.
    1. Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106:11–18.
    1. Lauwick S, Kim do J, Michelagnoli G, Mistraletti G, Feldman L, Fried G, et al. Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy. Can J Anaesth. 2008;55:754–760.
    1. Dirks J, Fabricius P, Petersen KL, Rowbotham MC, Dahl JB. The effect of systemic lidocaine on pain and secondary hyperalgesia associated with the heat/capsaicin sensitization model in healthy volunteers. Anesth Analg. 2000;91:967–972.
    1. Kawamata M, Takahashi T, Kozuka Y, Nawa Y, Nishikawa K, Narimatsu E, et al. Experimental incision-induced pain in human skin: effects of systemic lidocaine on flare formation and hyperalgesia. Pain. 2002;100:77–89.
    1. Koppert W, Ostermeier N, Sittl R, Weidner C, Schmelz M. Low-dose lidocaine reduces secondary hyperalgesia by a central mode of action. Pain. 2000;85:217–224.
    1. Martin F, Cherif K, Gentili ME, Enel D, Abe E, Alvarez JC, et al. Lack of impact of intravenous lidocaine on analgesia, functional recovery, and nociceptive pain threshold after total hip arthroplasty. Anesthesiology. 2008;109:118–123.
    1. Bryson GL, Charapov I, Krolczyk G, Taljaard M, Reid D. Intravenous lidocaine does not reduce length of hospital stay following abdominal hysterectomy. Can J Anaesth. 2010;57:759–766.
    1. Tremont-Lukats IW, Hutson PR, Backonja MM. A randomized, double-masked, placebo-controlled pilot trial of extended IV lidocaine infusion for relief of ongoing neuropathic pain. Clin J Pain. 2006;22:266–271.
    1. Sharma S, Rajagopal MR, Palat G, Singh C, Haji AG, Jain D. A phase II pilot study to evaluate use of intravenous lidocaine for opioidrefractory pain in cancer patients. J Pain Symptom Manage. 2009;37:85–93.

Source: PubMed

3
Se inscrever