Association of Diet and Antimicrobial Resistance in Healthy U.S. Adults

Andrew Oliver, Zhengyao Xue, Yirui T Villanueva, Blythe Durbin-Johnson, Zeynep Alkan, Diana H Taft, Jinxin Liu, Ian Korf, Kevin D Laugero, Charles B Stephensen, David A Mills, Mary E Kable, Danielle G Lemay, Andrew Oliver, Zhengyao Xue, Yirui T Villanueva, Blythe Durbin-Johnson, Zeynep Alkan, Diana H Taft, Jinxin Liu, Ian Korf, Kevin D Laugero, Charles B Stephensen, David A Mills, Mary E Kable, Danielle G Lemay

Abstract

Antimicrobial resistance (AMR) represents a significant source of morbidity and mortality worldwide, with expectations that AMR-associated consequences will continue to worsen throughout the coming decades. Since resistance to antibiotics is encoded in the microbiome, interventions aimed at altering the taxonomic composition of the gut might allow us to prophylactically engineer microbiomes that harbor fewer antibiotic resistant genes (ARGs). Diet is one method of intervention, and yet little is known about the association between diet and antimicrobial resistance. To address this knowledge gap, we examined diet using the food frequency questionnaire (FFQ; habitual diet) and 24-h dietary recalls (Automated Self-Administered 24-h [ASA24®] tool) coupled with an analysis of the microbiome using shotgun metagenome sequencing in 290 healthy adult participants of the United States Department of Agriculture (USDA) Nutritional Phenotyping Study. We found that aminoglycosides were the most abundant and prevalent mechanism of AMR in these healthy adults and that aminoglycoside-O-phosphotransferases (aph3-dprime) correlated negatively with total calories and soluble fiber intake. Individuals in the lowest quartile of ARGs (low-ARG) consumed significantly more fiber in their diets than medium- and high-ARG individuals, which was concomitant with increased abundances of obligate anaerobes, especially from the family Clostridiaceae, in their gut microbiota. Finally, we applied machine learning to examine 387 dietary, physiological, and lifestyle features for associations with antimicrobial resistance, finding that increased phylogenetic diversity of diet was associated with low-ARG individuals. These data suggest diet may be a potential method for reducing the burden of AMR. IMPORTANCE Antimicrobial resistance (AMR) represents a considerable burden to health care systems, with the public health community largely in consensus that AMR will be a major cause of death worldwide in the coming decades. Humans carry antibiotic resistance in the microbes that live in and on us, collectively known as the human microbiome. Diet is a powerful method for shaping the human gut microbiome and may be a tractable method for lessening antibiotic resistance, and yet little is known about the relationship between diet and AMR. We examined this relationship in healthy individuals who contained various abundances of antibiotic resistance genes and found that individuals who consumed diverse diets that were high in fiber and low in animal protein had fewer antibiotic resistance genes. Dietary interventions may be useful for lessening the burden of antimicrobial resistance and might ultimately motivate dietary guidelines which will consider how nutrition can reduce the impact of infectious disease.

Trial registration: ClinicalTrials.gov NCT02367287.

Keywords: antibiotic resistance; bioinformatics; diet; diversity; fiber; food; gut microbes; human health; machine learning; metagenomes; microbiome; nutrition.

Conflict of interest statement

The authors declare a conflict of interest. D.A.M. is a co-founder of Evolve Biosystems, a company focused on diet-based manipulation of the gut microbiota and BCD Biosciences, a company advancing novel bioactive glycans. Neither Evolve Biosystems nor BCD Biosciences had a role in the conceptualization, design, data collection, analysis, or preparation of this manuscript. Z.X. is now employed by Impossible Foods.

Figures

FIG 1
FIG 1
Distribution of antibiotic resistance mechanisms in a healthy U.S. cohort. (A) Stacked bar chart of the top nine most abundant ARG mechanisms across 290 individuals, normalized to genome equivalents (see Materials and Methods). Horizontal quartile lines are drawn based on total ARG abundance and represent our clustering strategy. (B) A zoom-in of the low-abundant mechanisms that are found increasingly throughout the high-ARG group. (C) Total ARG abundance violin plot summary between ARG clusters. Points represent the sum of ARG abundance within individuals.
FIG 2
FIG 2
Differences in microbiome diversity between ARG clusters. (A) Shannon diversity between ARG clusters (n = 290 individuals). Significance was determined using the Kruskal-Wallis test and a post hoc Dunn test, with P values correcting using the Benjamini-Hochberg method. (B) Nonmetric multidimensional scaling of Bray-Curtis distances between individuals’ microbiomes. Points are colored by ARG cluster. Beta diversity differences were determined using a PERMANOVA, which revealed significant differences in the community composition between the clusters.
FIG 3
FIG 3
Proportional odds logistic regression identifies relationships between dietary nutrients from directed hypotheses and ARG genes or mechanisms. The abundance of MEG 1039, an aminoglycoside-O-phosphotransferase (aph3-dprime), varied significantly with (A) total calorie intake and (B) soluble fiber intake (n = 290 individuals). Likewise, aggregated at the mechanism level, multimetal resistance significantly varied with (C) dietary fiber intake and (D) soluble fiber intake. The red regression line is based on the geom_smooth() function using the locally estimated scatterplot smoothing (LOESS) method from the R package ggplot2. The P values of the POLR regression are included in red, noting which covariates were included in the POLR analysis.
FIG 4
FIG 4
Using machine learning to identify aspects of diet, lifestyle, and the microbiome that predict ARG abundance. (A) SHAP values depicting the predictive power of a random forest using diet and lifestyle features to distinguish individuals in the low-ARG and medium-ARG groups. High levels of diversity in diet (which was correlated with diversity in carbohydrates) was most predictive of low-ARG individuals. (B) Features, sorted by their mean absolute SHAP value, which distinguish all ARG clusters, low-ARG (gray, n = 45) and medium-ARG (gold, n = 95), and low-ARG and high-ARG (blue, n = 47). (C) A nonmetric multidimensional scaling of Bray-Curtis distances between individuals’ microbiomes, with overlaid vectors of bacterial families identified as strong predictors of ARG cluster membership. Box plots show the log-transformed abundance of the families between ARG clusters. (D) A random forest using both microbiome and diet/lifestyle data uses mainly microbiome features in distinguishing ARG clusters.

References

    1. Wellcome Trust. 2016. The review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations. UK Government, Wellcome Trust, London, UK.
    1. Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R. 2017. Reducing antimicrobial use in food animals. Science 357:1350–1352. doi:10.1126/science.aao1495.
    1. Pouwels KB, Dolk FCK, Smith DRM, Robotham JV, Smieszek T. 2018. Actual versus “ideal” antibiotic prescribing for common conditions in English primary care. J Antimicrob Chemother 73:19–26. doi:10.1093/jac/dkx502.
    1. Roope LSJ, Smith RD, Pouwels KB, Buchanan J, Abel L, Eibich P, Butler CC, Tan PS, Sarah Walker A, Robotham JV, Wordsworth S. 2019. The challenge of antimicrobial resistance: what economics can contribute. Science 364:eaau4679. doi:10.1126/science.aau4679.
    1. Macfadden DR, Mcgough SF, Fisman D, Santillana M, Brownstein JS. 2018. Antibiotic resistance increases with local temperature. Nat Clim Chang 8:510–514. doi:10.1038/s41558-018-0161-6.
    1. Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V. 2014. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog Glob Health 108:235–245. doi:10.1179/2047773214Y.0000000148.
    1. Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, Zhu N. 2019. Differential drivers of antimicrobial resistance across the world. Acc Chem Res 52:916–924. doi:10.1021/acs.accounts.8b00643.
    1. World Health Organization. 2019. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. World Health Organization, Geneva, Switzerland.
    1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda-Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Cook AJ, Cooper B, Cressey TR, Criollo-Mora E, Cunningham M, Darboe S, Day NPJ, De Luca M, Dokova K, et al.. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. doi:10.1016/S0140-6736(21)02724-0.
    1. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE, Dominguez-Bello MG, Sonnenburg JL. 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:802–806. doi:10.1126/science.aan4834.
    1. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, Magris M, Hidalgo G, Contreras M, Noya-Alarcón Ó, Lander O, McDonald J, Cox M, Walter J, Oh PL, Ruiz JF, Rodriguez S, Shen N, Song SJ, Metcalf J, Knight R, Dantas G, Dominguez-Bello MG. 2015. The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183. doi:10.1126/sciadv.1500183.
    1. Wibowo MC, Yang Z, Borry M, Hübner A, Huang KD, Tierney BT, Zimmerman S, Barajas-Olmos F, Contreras-Cubas C, García-Ortiz H, Martínez-Hernández A, Luber JM, Kirstahler P, Blohm T, Smiley FE, Arnold R, Ballal SA, Pamp SJ, Russ J, Maixner F, Rota-Stabelli O, Segata N, Reinhard K, Orozco L, Warinner C, Snow M, LeBlanc S, Kostic AD. 2021. Reconstruction of ancient microbial genomes from the human gut. Nature 594:234–239. doi:10.1038/s41586-021-03532-0.
    1. Sonnenburg ED, Sonnenburg JL. 2019. The ancestral and industrialized gut microbiota and implications for human health. Nat Rev Microbiol 17:383–390. doi:10.1038/s41579-019-0191-8.
    1. Sonnenburg JL, Sonnenburg ED. 2019. Vulnerability of the industrialized microbiota. Science 366:eaaw9255. doi:10.1126/science.aaw9255.
    1. Liu J, Taft DH, Maldonado-Gomez MX, Johnson D, Treiber ML, Lemay DG, DePeters EJ, Mills DA. 2019. The fecal resistome of dairy cattle is associated with diet during nursing. Nat Commun 10:4406. doi:10.1038/s41467-019-12111-x.
    1. Treiber ML, Taft DH, Korf I, Mills DA, Lemay DG. 2020. Pre-and post-sequencing recommendations for functional annotation of human fecal metagenomes. BMC Bioinformatics 21:74. doi:10.1186/s12859-020-3416-y.
    1. Lebeaux RM, Coker MO, Dade EF, Palys TJ, Morrison HG, Ross BD, Baker ER, Karagas MR, Madan JC, Hoen AG. 2021. The infant gut resistome is associated with E. coli and early-life exposures. BMC Microbiol 21:201. doi:10.1186/s12866-021-02129-x.
    1. Li X, Stokholm J, Brejnrod A, Vestergaard GA, Russel J, Trivedi U, Thorsen J, Gupta S, Hjelmsø MH, Shah SA, Rasmussen MA, Bisgaard H, Sørensen SJ. 2021. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe 29:975–987.e4. doi:10.1016/j.chom.2021.03.017.
    1. Rahman SF, Olm MR, Morowitz MJ, Banfield JF. 2018. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome. mSystems 3:e00123-17. doi:10.1128/mSystems.00123-17.
    1. Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, Rautava S, Isolauri E, Salminen S, Kumar H, Satokari R, Virta M. 2018. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun 9:3891. doi:10.1038/s41467-018-06393-w.
    1. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, Zhang T. 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J 9:2490–2502. doi:10.1038/ismej.2015.59.
    1. Brito IL, Yilmaz S, Huang K, Xu L, Jupiter SD, Jenkins AP, Naisilisili W, Tamminen M, Smillie CS, Wortman JR, Birren BW, Xavier RJ, Blainey PC, Singh AK, Gevers D, Alm EJ. 2016. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535:435–439. doi:10.1038/nature18927.
    1. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci USA 109:1691–1696. doi:10.1073/pnas.1120238109.
    1. Qiu Q, Wang J, Yan Y, Roy B, Chen Y, Shang X, Dou T, Han L. 2020. Metagenomic analysis reveals the distribution of antibiotic resistance genes in a large-scale population of healthy individuals and patients with varied diseases. Front Mol Biosci 7:590018. doi:10.3389/fmolb.2020.590018.
    1. Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. 2021. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat Commun 12:2435. doi:10.1038/s41467-021-22757-1.
    1. Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL. 2020. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat Commun 11:4379. doi:10.1038/s41467-020-18164-7.
    1. Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK, Jiang S, Midani FS, Nimmagadda SN, O'Connell TM, Wright JP, Deshusses MA, David LA. 2018. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife 7:e35987. doi:10.7554/eLife.35987.
    1. Litvak Y, Byndloss MX, Bäumler AJ. 2018. Colonocyte metabolism shapes the gut microbiota. Science 362:eaat9076. doi:10.1126/science.aat9076.
    1. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–671. doi:10.1016/j.chom.2015.03.005.
    1. Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao Y, Litvak Y, Lopez CA, Xu G, Napoli E, Giulivi C, Tsolis RM, Revzin A, Lebrilla CB, Bäumler AJ. 2017. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357:570–575. doi:10.1126/science.aam9949.
    1. Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, Belk KE, Noyes NR, Morley PS. 2020. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48:E561–E569. doi:10.1093/nar/gkz1010.
    1. Holmes ZC, Silverman JD, Dressman HK, Wei Z, Dallow EP, Armstrong SC, Seed PC, Rawls JF, David LA. 2020. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition. mBio 11:e00914-20. doi:10.1128/mBio.00914-20.
    1. Oliver A, Chase AB, Weihe C, Orchanian SB, Riedel SF, Hendrickson CL, Lay M, Sewall JM, Martiny JBH, Whiteson K. 2021. High-fiber, whole-food dietary intervention alters the human gut microbiome but not fecal short-chain fatty acids. mSystems 6:e00115-21. doi:10.1128/mSystems.00115-21.
    1. Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. 2019. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365:eaaw1944. doi:10.1126/science.aaw1944.
    1. Muloi D, Ward MJ, Pedersen AB, Fèvre EM, Woolhouse MEJ, van Bunnik BAD. 2018. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathog Dis 15:467–474. doi:10.1089/fpd.2017.2411.
    1. Woolhouse M, Ward M, van Bunnik B, Farrar J. 2015. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci 370:20140083. doi:10.1098/rstb.2014.0083.
    1. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC, Harris SR, Brown DJ, Coia JE, Mulvey MR, Gilmour MW, Petrovska L, de Pinna E, Kuroda M, Akiba M, Izumiya H, Connor TR, Suchard MA, Lemey P, Mellor DJ, Haydon DT, Thomson NR. 2013. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341:1514–1517. doi:10.1126/science.1240578.
    1. Ward MJ, Gibbons CL, McAdam PR, van Bunnik BAD, Girvan EK, Edwards GF, Fitzgerald JR, Woolhouse MEJ. 2014. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol 80:7275–7282. doi:10.1128/AEM.01777-14.
    1. Spoor LE, McAdam PR, Weinert LA, Rambaut A, Hasman H, Aarestrup FM, Kearns AM, Larsen AR, Skov RL, Fitzgerald JR. 2013. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 4:e00356-13. doi:10.1128/mBio.00356-13.
    1. Lowder BV, Guinane CM, Ben Zakour NL, Weinert LA, Conway-Morris A, Cartwright RA, Simpson AJ, Rambaut A, Nübel U, Fitzgerald JR. 2009. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc Natl Acad Sci USA 106:19545–19550. doi:10.1073/pnas.0909285106.
    1. Thanner S, Drissner D, Walsh F. 2016. Antimicrobial resistance in agriculture. mBio 7:467–474. doi:10.1128/mBio.02227-15.
    1. Parker CT, Huynh S, Alexander A, Oliver AS, Cooper KK. 2021. Genomic characterization of Salmonella typhimurium DT104 strains associated with cattle and beef products. Pathogens 10:529. doi:10.3390/pathogens10050529.
    1. Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, Leeming E, Gibson R, Le Roy C, Al Khatib H, Francis L, Mazidi M, Mompeo O, Valles-Colomer M, Tett A, Beghini F, Dubois L, Bazzani D, Thomas AM, Mirzayi C, Khleborodova A, Oh S, Hine R, Bonnett C, Capdevila J, Danzanvilliers S, Giordano F, Geistlinger L, Waldron L, Davies R, Hadjigeorgiou G, Wolf J, Ordovás JM, Gardner C, Franks PW, Chan AT, Huttenhower C, Spector TD, Segata N. 2021. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27:321–332. doi:10.1038/s41591-020-01183-8.
    1. Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561. doi:10.1073/pnas.1000087107.
    1. Paine RT, Tegner MJ, Johnson EA. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1:535–545. doi:10.1007/s100219900049.
    1. Krysiak R, Frysz-Naglak D, Okopień B. 2008. Current views on the role of dehydroepiandrosterone in physiology, pathology and therapy. Pol Merkur Lekarski 24:66–71.
    1. Genazzani AD, Lanzoni C, Genazzani AR. 2012. Might DHEA be considered a beneficial replacement therapy in the elderly? Drugs Aging 24:173–185. doi:10.2165/00002512-200724030-00001.
    1. Giunta S, Sergio G. 2008. Exploring the complex relations between inflammation and aging (inflamm-aging): anti-inflamm-aging remodelling of inflamm- aging, from robustness to frailty. Inflamm Res 57:558–563. doi:10.1007/s00011-008-7243-2.
    1. Young DG, Skibinski G, Mason JI, James K. 1999. The influence of age and gender on serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6 sR) and transforming growth factor beta 1 (TGF-β1) levels in normal healthy blood donors. Clin Exp Immunol 117:476–481. doi:10.1046/j.1365-2249.1999.01003.x.
    1. Karelis AD, Fex A, Filion ME, Adlercreutz H, Aubertin-Leheudre M. 2010. Comparison of sex hormonal and metabolic profiles between omnivores and vegetarians in pre- and post-menopausal women. Br J Nutr 104:222–226. doi:10.1017/S0007114510000619.
    1. Kajita K, Ishizuka T, Mune T, Miura A, Ishizawa M, Kanoh Y, Kawai Y, Natsume Y, Yasuda K. 2003. Dehydroepiandrosterone down-regulates the expression of peroxisome proliferator-activated receptor γ in adipocytes. Endocrinology 144:253–259. doi:10.1210/en.2002-220039.
    1. Plotkin BJ, Konakieva MI. 2017. Attenuation of antimicrobial activity by the human steroid hormones. Steroids 128:120–127. doi:10.1016/j.steroids.2017.09.007.
    1. Baldiviez LM, Keim NL, Laugero KD, Hwang DH, Huang L, Woodhouse LR, Burnett DJ, Zerofsky MS, Bonnel EL, Allen LH, Newman JW, Stephensen CB. 2017. Design and implementation of a cross-sectional nutritional phenotyping study in healthy US adults. BMC Nutr 3:79. doi:10.1186/s40795-017-0197-4.
    1. Lemay DG, Baldiviez LM, Chin EL, Spearman SS, Cervantes E, Woodhouse LR, Keim NL, Stephensen CB, Laugero KD. 2021. Technician-scored stool consistency spans the full range of the bristol scale in a healthy US population and differs by diet and chronic stress load. J Nutr 151:1443–1452. doi:10.1093/jn/nxab019.
    1. Chin EL, Van Loan M, Spearman SS, Bonnel EL, Laugero KD, Stephensen CB, Lemay DG. 2021. Machine learning identifies stool pH as a predictor of bone mineral density in healthy multiethnic US adults. J Nutr 151:3379–3390. doi:10.1093/jn/nxab266.
    1. Rotmistrovsky K, Agarwala R. 2011. BMTagger: Best Match Tagger for removing human reads from metagenomics datasets. .
    1. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, Fulton RS, Kremitzki M, Magrini V, Markovic C, McGrath S, Steinberg KM, Auger K, Chow W, Collins J, Harden G, Hubbard T, Pelan S, Simpson JT, Threadgold G, Torrance J, Wood JM, Clarke L, Koren S, Boitano M, Peluso P, Li H, Chin CS, Phillippy AM, Durbin R, Wilson RK, Flicek P, Eichler EE, Church DM. 2017. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res 27:849–864. doi:10.1101/gr.213611.116.
    1. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170.
    1. Taft DH, Liu J, Maldonado-Gomez MX, Akre S, Huda MN, Ahmad SM, Stephensen CB, Mills DA. 2018. Bifidobacterial dominance of the gut in early life and acquisition of antimicrobial resistance. mSphere 3:e00441-18. doi:10.1128/mSphere.00441-18.
    1. Xu H, Luo X, Qian J, Pang X, Song J, Qian G, Chen J, Chen S. 2012. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One 7:e52249. doi:10.1371/journal.pone.0052249.
    1. Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. doi:10.1093/bioinformatics/btr507.
    1. Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol 20:257. doi:10.1186/s13059-019-1891-0.
    1. De La Cuesta-Zuluaga J, Ley RE, Youngblut ND. 2020. Struo: a pipeline for building custom databases for common metagenome profilers. Bioinformatics 36:2314–2315. doi:10.1093/bioinformatics/btz899.
    1. Salazar G. 2000. EcolUtils: utilities for community ecology analysis. 0.1.
    1. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324.
    1. Nayfach S, Pollard KS. 2015. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol 16:51. doi:10.1186/s13059-015-0611-7.
    1. Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi:10.1093/bioinformatics/btv033.
    1. Von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. 2019. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol 20:217. doi:10.1186/s13059-019-1817-x.
    1. Bushnell B. 2015. BBMap. .
    1. Epidemiology and Genomics Research Program. 2016. Automated Self-Administered 24-Hour (ASA24®) Dietary Assessment Tool. NIH, Bethesda, MD.
    1. Bouzid YY, Arsenault JE, Bonnel EL, Cervantes E, Kan A, Keim NL, Lemay DG, Stephensen CB. 2021. Effect of manual data cleaning on nutrient intakes using the Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24). Curr Dev Nutr 5:nzab005. doi:10.1093/cdn/nzab005.
    1. U.S. Department of Health and Human Services. 2015. 2015–2020 Dietary guidelines for Americans, eighth edition. Department of Health and Human Services, Washington, DC.
    1. Kable ME, Chin EL, Storms D, Lemay DG, Stephensen CB. 2022. Tree-Based analysis of dietary diversity captures associations between fiber intake and gut microbiota composition in a healthy US adult cohort. J Nutr 152:779–788. doi:10.1093/jn/nxab430.
    1. Soltani H, Keim NL, Laugero KD. 2018. Diet quality for sodium and vegetables mediate effects of whole food diets on 8-week changes in stress load. Nutrients 10:1606. doi:10.3390/nu10111606.
    1. Mcewen BS. 2004. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 1032:1–7. doi:10.1196/annals.1314.001.
    1. Juster R-P, McEwen BS, Lupien SJ. 2010. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev 35:2–16. doi:10.1016/j.neubiorev.2009.10.002.
    1. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan: community Ecology Package. R package version. .
    1. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore M, Bradbury PJ, Yu J, Arnett Dk Ordovas JM, Buckler ES, Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ, Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES, Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES, Lenné JM, Takan JP, Mgonja MA, Manyasa EO, Kaloki P, Wanyera N, Okwadi J, et al.. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. .
    1. Dinno A. 2017. dunn.test: Dunn’s test of multiple comparisons using rank sums, version 1.3.5.
    1. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi:10.1186/gb-2011-12-6-r60.
    1. Fox J, Weisberg S. 2019. An {R} companion to applied regression, third edition. Sage Publications, Thousand Oaks, CA.
    1. Peterson RA. 2021. Finding optimal normalizing transformations via bestNormalize. R J 13:310–329. doi:10.32614/rj-2021-041.
    1. McCullagh P. 1980. Regression models for ordinal data. J R Stat Soc Ser B 42:109–142. doi:10.1111/j.2517-6161.1980.tb01109.x.
    1. Liu Q, Shepherd BE, Li C, Harrell FE. 2017. Modeling continuous response variables using ordinal regression. Stat Med 36:4316–4335. doi:10.1002/sim.7433.
    1. Venables WN, Ripley BD. 2002. Modern applied statistics with S. Springer, New York, NY.
    1. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De Sutter L, Lima-Mendez G, D'hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. 2016. Population-level analysis of gut microbiome variation. Science 352:560–564. doi:10.1126/science.aad3503.
    1. Park J, Kato K, Murakami H, Hosomi K, Tanisawa K, Nakagata T, Ohno H, Konishi K, Kawashima H, Chen YA, Mohsen A, Zhong Xiao J, Odamaki T, Kunisawa J, Mizuguchi K, Miyachi M. 2021. Comprehensive analysis of gut microbiota of a healthy population and covariates affecting microbial variation in two large Japanese cohorts. BMC Microbiol 21:151. doi:10.1186/s12866-021-02215-0.
    1. Wickham H. 2016. ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A Stat Soc 174:245.
    1. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830.
    1. van Rossum G, Drake FL. 2009. Python 3 reference manual. CreateSpace, Scotts Valley, CA.
    1. Topçuoğlu B, Lapp Z, Sovacool K, Snitkin E, Wiens J, Schloss P. 2021. mikropml: user-friendly R package for supervised machine learning pipelines. J Open Source Softw 6:3073. doi:10.21105/joss.03073.
    1. Lundberg SM, Lee S-I. 2017. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 16:426–430.

Source: PubMed

3
Se inscrever