Influence of overdistension/recruitment induced by high positive end-expiratory pressure on ventilation-perfusion matching assessed by electrical impedance tomography with saline bolus

Huaiwu He, Yi Chi, Yun Long, Siyi Yuan, Inéz Frerichs, Knut Möller, Feng Fu, Zhanqi Zhao, Huaiwu He, Yi Chi, Yun Long, Siyi Yuan, Inéz Frerichs, Knut Möller, Feng Fu, Zhanqi Zhao

Abstract

Background: High positive end-expiratory pressures (PEEP) may induce overdistension/recruitment and affect ventilation-perfusion matching (VQMatch) in mechanically ventilated patients. This study aimed to investigate the association between PEEP-induced lung overdistension/recruitment and VQMatch by electrical impedance tomography (EIT).

Methods: The study was conducted prospectively on 30 adult mechanically ventilated patients: 18/30 with ARDS and 12/30 with high risk for ARDS. EIT measurements were performed at zero end-expiratory pressures (ZEEP) and subsequently at high (12-15 cmH2O) PEEP. The number of overdistended pixels over the number of recruited pixels (O/R ratio) was calculated, and the patients were divided into low O/R (O/R ratio < 15%) and high O/R groups (O/R ratio ≥ 15%). The global inhomogeneity (GI) index was calculated to evaluate the ventilation distribution. Lung perfusion image was calculated from the EIT impedance-time curves caused by 10 ml 10% NaCl injection during a respiratory pause (> 8 s). DeadSpace%, Shunt%, and VQMatch% were calculated based on lung EIT perfusion and ventilation images.

Results: Increasing PEEP resulted in recruitment mainly in dorsal regions and overdistension mainly in ventral regions. ΔVQMatch% (VQMatch% at high PEEP minus that at ZEEP) was significantly correlated with recruited pixels (r = 0.468, P = 0.009), overdistended pixels (r = - 0.666, P < 0.001), O/R ratio (r = - 0.686, P < 0.001), and ΔSpO2 (r = 0.440, P = 0.015). Patients in the low O/R ratio group (14/30) had significantly higher Shunt% and lower VQMatch% than those in the high O/R ratio group (16/30) at ZEEP but not at high PEEP. Comparable DeadSpace% was found in both groups. A high PEEP caused a significant improvement of VQMatch%, DeadSpace%, Shunt%, and GI in the low O/R ratio group, but not in the high O/R ratio group. Using O/R ratio of 15% resulted in a sensitivity of 81% and a specificity of 100% for an increase of VQMatch% > 20% in response to high PEEP.

Conclusions: Change of ventilation-perfusion matching was associated with regional overdistention and recruitment induced by PEEP. A low O/R ratio induced by high PEEP might indicate a more homogeneous ventilation and improvement of VQMatch.

Trial registration: ClinicalTrials.gov, NCT04081155 . Registered on 9 September 2019-retrospectively registered.

Keywords: Dead space; Electrical impedance tomography; Lung perfusion; Overdistension; Recruitment; Shunt; Ventilation distribution; Ventilation–perfusion matching.

Conflict of interest statement

Zhanqi Zhao receives a consulting fee from Dräger Medical. Inéz Frerichs reports funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (WELMO, Grant No. 825572) and reimbursement of speaking fees, congress, and travel costs by Dräger Medical. The other authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Illustration of the data analysis method of regional recruitment, overdistension, and V-Q matching in one study patient. Top: tidal variation images at ZEEP (left), PEEP (middle), and the corresponding difference image (right). In the tidal variation images, regions with low ventilation are marked in dark blue and highly ventilated regions in light blue to white. Collapsed or overdistended regions are comprised in the low/non-ventilated dark blue or black areas. In the difference image, ventilation gain and loss at PEEP compared to ZEEP are marked in blue and orange, respectively. Middle: perfusion images at ZEEP (left) and PEEP (middle). Highly perfused regions are marked in red. Colorbars in arbitrary units. Recruited and overdistended regions were defined based on ventilation difference image (right). Bottom: regional V-Q matching images at ZEEP (left) and PEEP (right)
Fig. 2
Fig. 2
Comparisons of VQMatch%, Shunt%, and DeadSpace% between low O/R and high O/R groups at ZEEP (left) and PEEP (right). *P < 0.05 compared to low O/R
Fig. 3
Fig. 3
ΔVQMatch%, ΔShunt%, ΔDeadSpace%, and ΔGI induced by PEEP in the low O/R and high O/R groups. Δ = high PEEP – ZEEP. *P < 0.05 compared to low O/R
Fig. 4
Fig. 4
The areas under the receiver operating characteristic curves (AUC) of O/R ratio, total recruited pixels, and total overdistended pixels used for prediction of an increase of VQMatch% > 20% in the incremental PEEP trial. * < 0.05, vs. AUC of total recruited pixels

References

    1. Cressoni M, Caironi P, Polli F, Carlesso E, Chiumello D, Cadringher P, Quintel M, Ranieri VM, Bugedo G, Gattinoni L. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med. 2008;36(3):669–675. doi: 10.1097/01.CCM.0000300276.12074.E1.
    1. Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, Caironi P, Lazzerini M, Moerer O, Quintel M, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–264. doi: 10.1097/CCM.0b013e3182a6384f.
    1. Cavalcanti AB, Suzumura EA, Laranjeira LN, Paisani DM, Damiani LP, Guimaraes HP, Romano ER, Regenga MM, Taniguchi LNT, Teixeira C, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318(14):1335–1345. doi: 10.1001/jama.2017.14171.
    1. Karbing DS, Panigada M, Bottino N, Spinelli E, Protti A, Rees SE, Gattinoni L. Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: a prospective single-arm interventional study. Crit Care. 2020;24(1):111. doi: 10.1186/s13054-020-2834-6.
    1. Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Bohm SH, Teschner E, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, Tubiolo D, Tagliabue P, Zanella A, Grasselli G, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med. 2020;48(8):1129–1134. doi: 10.1097/CCM.0000000000004386.
    1. He H, Long Y, Frerichs I, Zhao Z. Detection of acute pulmonary embolism by electrical impedance tomography and saline bolus injection. Am J Respir Crit Care Med. 2020;202(6):881–2.
    1. He H, Chi Y, Long Y, Yuan S, Zhang R, Frerichs I, Moller K, Fu F, Zhao Z. Bedside evaluation of pulmonary embolism by saline contrast electrical impedance tomography method: a prospective observational study. Am J Respir Crit Care Med. 2020. 10.1164/rccm.202005-1780LE. Online ahead of print.
    1. Fakhr BS, Araujo Morais CC, De Santis Santiago RR, Di Fenza R, Gibson LE, Restrepo PA, Chang MG, Bittner EA, Pinciroli R, Fintelmann FJ, et al. Bedside lung perfusion by electrical impedance tomography in the time of COVID-19. Br J Anaesth. 2020. 10.1016/j.bja.2020.08.001. Online ahead of print.
    1. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533.
    1. Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, Munno I, Ruggiero V, Anaclerio R, Cafarelli A, et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007;176(8):761–767. doi: 10.1164/rccm.200702-193OC.
    1. Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009;35(11):1900–1906. doi: 10.1007/s00134-009-1589-y.
    1. Thompson Hk Jr Fau - Starmer CF, Starmer Cf Fau - Whalen RE, Whalen Re Fau - Mcintosh HD, McIntosh HD: Indicator transit time considered as a gamma variate. Circ Res 1964(14):502–515.
    1. Meier P Fau - Zierler KL, Zierler KL: On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954(6):731–744.
    1. Bluth T, Kiss T, Kircher M, Braune A, Bozsak C, Huhle R, Scharffenberg M, Herzog M, Roegner J, Herzog P, et al. Measurement of relative lung perfusion with electrical impedance and positron emission tomography: an experimental comparative study in pigs. Br J Anaesth. 2019;123(2):246–254. doi: 10.1016/j.bja.2019.04.056.
    1. Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol. 2012;112(1):225–236. doi: 10.1152/japplphysiol.01090.2010.
    1. Hodgson CL, Cooper DJ, Arabi Y, King V, Bersten A, Bihari S, Brickell K, Davies A, Fahey C, Fraser J, et al. Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A phase II, multicenter randomized controlled clinical trial. Am J Respir Crit Care Med. 2019;200(11):1363–1372. doi: 10.1164/rccm.201901-0109OC.
    1. Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, Sklar MC, Rauseo M, Ferguson ND, Fan E, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A clinical trial. Am J Respir Crit Care Med. 2020;201(2):178–187. doi: 10.1164/rccm.201902-0334OC.
    1. Zhao Z, Steinmann D, Frerichs I, Guttmann J, Möller K. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010;14(1):R8. doi: 10.1186/cc8860.
    1. Franchineau G, Brechot N, Lebreton G, Hekimian G, Nieszkowska A, Trouillet JL, Leprince P, Chastre J, Luyt CE, Combes A, et al. Bedside contribution of electrical impedance tomography to set positive end-expiratory pressure for ECMO-treated severe ARDS patients. Am J Respir Crit Care Med. 2017;196(4):447–57.
    1. Karsten J, Grusnick C, Paarmann H, Heringlake M, Heinze H. Positive end-expiratory pressure titration at bedside using electrical impedance tomography in post-operative cardiac surgery patients. Acta Anaesthesiol Scand. 2015;59(6):723–732. doi: 10.1111/aas.12518.
    1. Zhao Z, Chang MY, Gow CH, Zhang JH, Hsu YL, Frerichs I, Chang HT, Moller K. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):7. doi: 10.1186/s13613-019-0484-0.
    1. Zhao Z, Fu F, Frerichs I. Thoracic electrical impedance tomography in Chinese hospitals: a review of clinical research and daily applications. Physiological measurement. 2020;41(4):04TR01. doi: 10.1088/1361-6579/ab81df.
    1. Zhao Z, Lee LC, Chang MY, Frerichs I, Chang HT, Gow CH, Hsu YL, Moller K. The incidence and interpretation of large differences in EIT-based measures for PEEP titration in ARDS patients. J Clin Monit Comput. 2020;34(5):1005–13.
    1. Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S. Protective ventilation using electrical impedance tomography. Physiol Meas. 2007;28(7):S247–S260. doi: 10.1088/0967-3334/28/7/S18.
    1. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354(17):1775–1786. doi: 10.1056/NEJMoa052052.
    1. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–1286. doi: 10.1056/NEJMoa012835.
    1. Lucangelo U, Bernabe F, Vatua S, Degrassi G, Villagra A, Fernandez R, Romero PV, Saura P, Borelli M, Blanch L. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest. 2008;133(1):62–71. doi: 10.1378/chest.07-0935.
    1. Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, Bohm SH. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesthesia and analgesia. 2008;106(1):175–181. doi: 10.1213/01.ane.0000287684.74505.49.
    1. Fengmei G, Jin C, Songqiao L, Congshan Y, Yi Y. Dead space fraction changes during PEEP titration following lung recruitment in patients with ARDS. Respir Care. 2012;57(10):1578–1585. doi: 10.4187/respcare.01497.
    1. Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;28(9):1239–1245. doi: 10.1007/s00134-002-1419-y.
    1. Gogniat E, Ducrey M, Dianti J, Madorno M, Roux N, Midley A, Raffo J, Giannasi S, San Roman E, Suarez-Sipmann F, et al. Dead space analysis at different levels of positive end-expiratory pressure in acute respiratory distress syndrome patients. J Crit Care. 2018;45:231–238. doi: 10.1016/j.jcrc.2018.01.005.
    1. Writing Committee for the PCGotPVNftCTNotESoA. Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M, Group PC. Bluth T, Bobek I, Canet JC, et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA. 2019;321(23):2292–2305. doi: 10.1001/jama.2019.7505.

Source: PubMed

3
Se inscrever