Effects of Glucagon-Like Peptide-1 Receptor Agonists, Sodium-Glucose Cotransporter-2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients With Type 2 Diabetes Mellitus After 12-Month Treatment

Ignatios Ikonomidis, George Pavlidis, John Thymis, Dionysia Birba, Aimilianos Kalogeris, Foteini Kousathana, Aikaterini Kountouri, Konstantinos Balampanis, John Parissis, Ioanna Andreadou, Konstantinos Katogiannis, George Dimitriadis, Aristotelis Bamias, Efstathios Iliodromitis, Vaia Lambadiari, Ignatios Ikonomidis, George Pavlidis, John Thymis, Dionysia Birba, Aimilianos Kalogeris, Foteini Kousathana, Aikaterini Kountouri, Konstantinos Balampanis, John Parissis, Ioanna Andreadou, Konstantinos Katogiannis, George Dimitriadis, Aristotelis Bamias, Efstathios Iliodromitis, Vaia Lambadiari

Abstract

Background We investigated the effects of insulin, glucagon-like peptide-1 receptor agonists (GLP-1RA), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), and their combination on vascular and cardiac function of patients with type 2 diabetes mellitus. Methods and Results A total of 160 patients with type 2 diabetes mellitus were randomized to insulin (n=40), liraglutide (n=40), empagliflozin (n=40), or their combination (GLP-1RA+SGLT-2i) (n=40) as add-on to metformin. We measured at baseline and 4 and 12 months posttreatment: (a) perfused boundary region of the sublingual arterial microvessels (marker of endothelial glycocalyx thickness), (b) pulse wave velocity (PWV) and central systolic blood pressure, (c) global left ventricular longitudinal, circumferential, and radial strain, (d) myocardial work index (global work index) derived by pressure-myocardial strain loops using speckle tracking imaging. Twelve months posttreatment, all patients improved perfused boundary region, PWV, global longitudinal strain, global circumferential strain, and global radial strain (P<0.05). GLP-1RA, SGLT-2i, and their combination showed a greater reduction of perfused boundary region, PWV, and central systolic blood pressure than insulin, despite a similar glycosylated hemoglobin reduction (P<0.05). GLP-1RA or GLP-1RA+SGLT-2i provided a greater increase of global work index (12.7% and 17.4%) compared with insulin or SGLT-2i (3.1% and 2%). SGLT-2i or GLP-1RA and SGLT-2i showed a greater decrease of PWV (10.1% and 13%) and central and brachial systolic blood pressure than insulin or GLP-1RA (PWV, 3.6% and 8.6%) (P<0.05 for all comparisons). The dual therapy showed the greatest effect on measured markers in patients with left ventricular ejection fraction <55% (P<0.05). Conclusions Twelve-month treatment with GLP-1RA, SGLT-2i, and their combination showed a greater improvement of vascular markers and effective cardiac work than insulin treatment in type 2 diabetes mellitus. The combined therapy as second line was superior to either insulin or GLP-1RA and SGLT-2i separately. Registration URL: https://www.clini​caltr​ials.gov. Unique identifier: NCT03878706.

Keywords: arterial stiffness; endothelial glycocalyx; glucagon‐like peptide‐1 receptor agonists; left ventricular function; sodium‐glucose cotransporter‐2 inhibitors.

Figures

Figure 1. Percentage changes (Δs) from baseline…
Figure 1. Percentage changes (Δs) from baseline in perfused boundary region (PBR) (A), pulse wave velocity (PWV) (B), central systolic blood pressure (cSBP) (C), left ventricular global longitudinal strain (GLS) (D), PWV/GLS ratio (E), and myocardial global work index (GWI) (F) at 4 and 12 months in the 4 study groups.
Data shown are means±SD. *P<0.05, **P<0.01, ***P<0.001 vs baseline. GLP‐1RA indicates glucagon‐like peptide‐1 receptor agonists; and SGLT‐2i, sodium‐glucose cotransporter‐2 inhibitors.
Figure 2. Representative images of myocardial work…
Figure 2. Representative images of myocardial work index derived by pressure–left ventricular (LV) longitudinal myocardial strain loop during one cardiac cycle by speckle tracking echocardiography in 2 patients under combination therapy with glucagon‐like peptide‐1 receptor agonists+sodium‐glucose cotransporter‐2 inhibitors.
The bull's eye shows the myocardial work index in each one of the 17 LV myocardial segments. The perfused boundary region of sublingual microvessels ranging from 5 to 25 μm diameter (PBR 5‐25), reflecting glycocalyx thickness (higher PBR indicates thinner glycolaxyx), is shown as bars by Glycocheck software. The first patient had an LV ejection fraction (LVEF) of 45% and impaired global longitundinal strain (GLS), myocardial work index, and endothelial glycocalyx thickness (a GLS of −13%, a global work index [GWI] of 1433 mm Hg%, and a PBR 5‐25 of 2.24 μm) at baseline and showed a significant improvement (a GLS of −16%, a GWI of 1751 mm Hg%, and a PBR 5‐25 of 1.79 μm) after 12 months treatment (A through D). The second patient with an LVEF of 60%, a GLS of −17%, a GWI of 1851 mm Hg%, and a PBR 5‐25 of 1.87 μm at baseline showed a further improvement to a GLS of −21%, a GWI of 2114 mm Hg%, and a PBR 5‐25 of 1.64 μm after 12 months treatment (E through H). Images provided as courtesy by Dr I. Ikonomidis, Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, National and Kapodistrian University of Athens (NKUA), Athens, Greece. ANT indicates anterior segments; BP, blood pressure; GCW, global constructive work; GWW, global wasted work; GWE, global work efficiency; INF, inferior segments; LAT, lateral segments; LVP, left ventricular pressure; P50, Median width of red blood cell column; POST, posterior segments; and SEPT, septal segments.
Figure 3. Representative images of myocardial work…
Figure 3. Representative images of myocardial work index derived by pressure–left ventricular (LV) longitudinal myocardial strain loop during one cardiac cycle by speckle tracking echocardiography in a patient under treatment with insulin at baseline and 12 months posttreatment (A and B).
The bull's eye shows the myocardial work index in each one of the 17 LV myocardial segments. The perfused boundary region of sublingual microvessels ranging from 5 to 25 μm diameter (PBR 5‐25), reflecting glycocalyx thickness (higher PBR indicates thinner glycolaxyx), is shown as bars by Glycocheck software (C and D). The patient at baseline had an LV ejection fraction of 50%, a global longitundinal strain (GLS) of −17%, a global work index (GWI) of 1735 mm Hg%, and a PBR 5‐25 of 2.58 μm; and 12 months posttreatment, the patient maintained a GLS of −17%, a GWI of 1823 mm Hg%, and a PBR 5‐25 of 2.46 μm. Images provided as courtesy by Dr I. Ikonomidis, Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, National and Kapodistrian University of Athens (NKUA), Athens, Greece. ANT indicates anterior segments; BP, blood pressure; GCW, global constructive work; GWW, global wasted work; GWE, global work efficiency; INF, inferior segments; LAT, lateral segments; LVP, left ventricular pressure; P50, Median width of red blood cell column; POST, posterior segments; and SEPT, septal segments.

References

    1. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus ‐ mechanisms, management, and clinical considerations. Circulation. 2016;133:2459–2502.
    1. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Furtado RHM, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Comparison of the effects of glucagon‐like peptide receptor agonists and sodium‐glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019;139:2022–2031.
    1. DeFronzo RA. Combination therapy with GLP‐1 receptor agonist and SGLT2 inhibitor. Diabetes Obes Metab. 2017;19:1353–1362.
    1. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, et al; ESC Scientific Document Group . 2019 ESC guidelines on diabetes, pre‐diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323.10.1093/eurheartj/ehz486
    1. Van Teeffelen JW, Brands J, Stroes ES, Vink H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc Med. 2007;17:101–105.
    1. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55:480–486.
    1. Lekakis J, Abraham P, Balbarini A, Blann A, Boulanger CM, Cockcroft J, Cosentino F, Deanfield J, Gallino A, Ikonomidis I, et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur J Cardiovasc Prev Rehabil. 2011;18:775–789.
    1. Schram MT, Henry RM, van Dijk RA, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, Bouter LM, Westerhof N, Stehouwer CD. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension. 2004;43:176–181.
    1. Tritakis V, Tzortzis S, Ikonomidis I, Dima K, Pavlidis G, Trivilou P, Paraskevaidis I, Katsimaglis G, Parissis J, Lekakis J. Association of arterial stiffness with coronary flow reserve in revascularized coronary artery disease patients. World J Cardiol. 2016;8:231–239.
    1. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De Carlo M, Delgado V, Lancellotti P, Lekakis J, et al. The role of ventricular‐arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions: a consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail. 2019;21:402–424.
    1. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corrà U, Cosyns B, Deaton C, et al; ESC Scientific Document Group . 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315–2381.
    1. Hanefeld M, Monnier L, Schnell O, Owens D. Early treatment with basal insulin glargine in people with type 2 diabetes: lessons from ORIGIN and other cardiovascular trials. Diabetes Ther. 2016;7:187–201.
    1. Gerstein HC, Jung H, Rydén L, Diaz R, Gilbert RE, Yusuf S; ORIGIN Investigators . Effect of basal insulin glargine on first and recurrent episodes of heart failure hospitalization: the ORIGIN trial (Outcome Reduction With Initial Glargine Intervention). Circulation. 2018;137:88–90.
    1. Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of hyperglycemia in type 2 diabetes, 2018: a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41:2669–2701.
    1. Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol. 2012;23:1900–1908.
    1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, et al; ESC Scientific Document Group . 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104.
    1. Ikonomidis I, Makavos G, Papadavid E, Varoudi M, Andreadou I, Gravanis K, Theodoropoulos K, Pavlidis G, Triantafyllidi H, Parissis J, et al. Similarities in coronary function and myocardial deformation between psoriasis and coronary artery disease: the role of oxidative stress and inflammation. Can J Cardiol. 2015;31:287–295.
    1. Ikonomidis I, Tzortzis S, Andreadou I, Paraskevaidis I, Katseli C, Katsimbri P, Pavlidis G, Parissis J, Kremastinos D, Anastasiou‐Nana M, et al. Increased benefit of interleukin‐1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ Cardiovasc Imaging. 2014;7:619–628.
    1. Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, Caballero L, Akhaladze N, Athanassopoulos GD, Barone D, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18:833–840.
    1. Ikonomidis I, Katsanos S, Triantafyllidi H, Parissis J, Tzortzis S, Pavlidis G, Trivilou P, Makavos G, Varoudi M, Frogoudaki A, et al. Pulse wave velocity to global longitudinal strain ratio in hypertension. Eur J Clin Invest. 2019;49:e13049.
    1. Manganaro R, Marchetta S, Dulgheru R, Sugimoto T, Tsugu T, Ilardi F, Cicenia M, Ancion A, Postolache A, Martinez C, et al. Correlation between non‐invasive myocardial work indices and main parameters of systolic and diastolic function: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2019;pii:jez203 DOI: 10.1093/ehjci/jez203.
    1. Muller KE, Lavange LM, Ramey SL, Ramey CT. Power calculations for general linear multivariate models including repeated measures applications. J Am Stat Assoc. 1992;87:1209–1226.
    1. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, Schmoor C, Ohneberg K, Johansen OE, George JT, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA‐REG OUTCOME trial. Diabetes Care. 2018;41:356–363.
    1. Garg V, Verma S, Connelly K. Mechanistic insights regarding the role of SGLT2 inhibitors and GLP1 agonist drugs on cardiovascular disease in diabetes. Prog Cardiovasc Dis. 2019;62:349–357.
    1. Del Olmo‐Garcia MI, Merino‐Torres JF. GLP‐1 receptor agonists and cardiovascular disease in patients with type 2 diabetes. J Diabetes Res. 2018;2018:4020492.
    1. Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, Jørgensen E, Helqvist S, Saunamäki K, Clemmensen P, et al. Exenatide reduces reperfusion injury in patients with ST‐segment elevation myocardial infarction. Eur Heart J. 2012;33:1491–1499.
    1. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP. Effects of glucagon‐like peptide‐1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–965.
    1. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen YT, Shannon RP. Recombinant glucagon‐like peptide‐1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing‐induced dilated cardiomyopathy. Circulation. 2004;110:955–961.
    1. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors. Circulation. 2017;136:849–870.
    1. Lambadiari V, Pavlidis G, Kousathana F, Varoudi M, Vlastos D, Maratou E, Georgiou D, Andreadou I, Parissis J, Triantafyllidi H, et al. Effects of 6‐month treatment with the glucagon like peptide‐1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol. 2018;17:8.
    1. Robinson LE, Holt TA, Rees K, Randeva HS, O'Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta‐analysis. BMJ Open. 2013;3:e001986.
    1. Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, Cappola TP, Margulies KB, Drucker DJ. GLP‐1 receptor expression within the human heart. Endocrinology. 2018;159:1570–1584.
    1. Drucker DJ. The cardiovascular biology of glucagon‐like peptide‐1. Cell Metab. 2016;24:15–30.
    1. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20:479–487.
    1. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, Johansen OE. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:1180–1193.
    1. Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter‐2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136:1643–1658.
    1. Packer M, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, Kimura K, Zeller C, George J, Brueckmann M, et al. EMPEROR‐reduced trial committees and investigators. Eur J Heart Fail. 2019;21:1270–1278.
    1. Santos‐Gallego CG, Garcia‐Ropero A, Mancini D, Pinney SP, Contreras JP, Fergus I, Abascal V, Moreno P, Atallah‐Lajam F, Tamler R, et al. Rationale and design of the EMPA‐TROPISM Trial (ATRU‐4): are the “cardiac benefits” of empagliflozin independent of its hypoglycemic activity? Cardiovasc Drugs Ther. 2019;33:87–95.
    1. Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, Bruno RM. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16:138.
    1. Baartscheer A, Schumacher CA, Wüst RC, Fiolet JW, Stienen GJ, Coronel R, Zuurbier CJ. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60:568–573.
    1. Santos‐Gallego CG, Requena‐Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, Flores E, Garcia‐Ropero A, Sanz J, Hajjar RJ, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73:1931–1944.
    1. Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frøkiær J, Eiskjaer H, Jespersen NR, et al. Cardiovascular effects of treatment with the ketone body 3‐hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139:2129–2141.
    1. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310.
    1. Andreadou I, Efentakis P, Balafas E, Togliatto G, Davos CH, Varela A, Dimitriou CA, Nikolaou PE, Maratou E, Lambadiari V, et al. Empagliflozin limits myocardial infarction in vivo and cell death in vitro: role of STAT3, mitochondria, and redox aspects. Front Physiol. 2017;8:1077.
    1. Verma S, Garg A, Yan AT, Gupta AK, Al‐Omran M, Sabongui A, Teoh H, Mazer CD, Connelly KA. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA‐REG OUTCOME trial? Diabetes Care. 2016;39:e212–e213.
    1. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, et al; EMPA‐HEART CardioLink‐6 Investigators . Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes and coronary artery disease: the EMPA‐HEART CardioLink‐6 randomized clinical trial. Circulation. 2019;140:1693–1702.
    1. Di Franco A, Cantini G, Tani A, Coppini R, Zecchi‐Orlandini S, Raimondi L, Luconi M, Mannucci E. Sodium‐dependent glucose transporters (SGLT) in human ischemic heart: a new potential pharmacological target. Int J Cardiol. 2017;243:86–90.
    1. Ikonomidis I, Pavlidis G, Lambadiari V, Kousathana F, Varoudi M, Spanoudi F, Maratou E, Parissis J, Triantafyllidi H, Dimitriadis G, et al. Early detection of left ventricular dysfunction in first‐degree relatives of diabetic patients by myocardial deformation imaging: the role of endothelial glycocalyx damage. Int J Cardiol. 2017;233:105–112.
    1. Lambadiari V, Pavlidis G, Kousathana F, Maratou E, Georgiou D, Andreadou I, Kountouri A, Varoudi M, Balampanis K, Parissis J, et al. Effects of different antidiabetic medications on endothelial glycocalyx, myocardial function, and vascular function in type 2 diabetic patients: one year follow‐up study. J Clin Med. 2019;8:E983.
    1. Ikonomidis I, Marinou M, Vlastos D, Kourea K, Andreadou I, Liarakos N, Triantafyllidi H, Pavlidis G, Tsougos E, Parissis J, et al. Effects of varenicline and nicotine replacement therapy on arterial elasticity, endothelial glycocalyx and oxidative stress during a 3‐month smoking cessation program. Atherosclerosis. 2017;262:123–130.
    1. Seino Y, Yabe D, Sasaki T, Fukatsu A, Imazeki H, Ochiai H, Sakai S. Sodium‐glucose cotransporter‐2 inhibitor luseogliflozin added to glucagon‐like peptide 1 receptor agonist liraglutide improves glycemic control with bodyweight and fat mass reductions in Japanese patients with type 2 diabetes: a 52‐week, open‐label, single‐arm study. J Diabetes Invest. 2018;9:332–340.
    1. Lundkvist P, Pereira MJ, Katsogiannos P, Sjöström CD, Johnsson E, Eriksson JW. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes Metab. 2017;19:1276–1288.

Source: PubMed

3
Se inscrever