The DEXA-SEPSIS study protocol: a phase II randomized double-blinded controlled trial of the effect of early dexamethasone in high-risk sepsis patients

Kihwan Choi, Jong Eun Park, Anhye Kim, Sojung Hwang, Jinkun Bae, Tae Gun Shin, Kyuseok Kim, Kihwan Choi, Jong Eun Park, Anhye Kim, Sojung Hwang, Jinkun Bae, Tae Gun Shin, Kyuseok Kim

Abstract

Objective: Steroids are used in cases of sepsis, especially in patients experiencing septic shock. However, clinical trials to date have reported contradictory results. Different patient endotypes and variations in the type and dose of steroid may be at fault for this discrepancy, and further investigation is warranted. In this paper, we propose a new DEXA-SEPSIS study design.

Methods: We plan to conduct a multicenter, double-blinded randomized pilot study (DEXA-SEPSIS) investigating the feasibility and safety of early use of dexamethasone in sepsis. Participants will be high-risk septic patients presenting to the emergency department with a systolic blood pressure of <90 mmHg or serum lactate level of >2 mmol/L. Participants will be randomized to the following three groups: control, 0.1 mg/kg of dexamethasone, or 0.2 mg/kg of dexamethasone per day for 1 to 2 days. The primary outcome will be 28-day mortality. Secondary outcomes will include time to septic shock, shock reversal, additional steroid administration, number of ventilator-free days, use of continuous renal-replacement therapy, length of stay in the intensive care unit and/or hospital, delta Sequential Organ Failure Assessment score on days 3 and 7, superinfection, gastrointestinal bleeding, hypernatremia, and hyperglycemia.

Discussion: The DEXA-SEPSIS study will provide insight regarding the feasibility and safety of early use of dexamethasone in high-risk sepsis. The results could provide data to design a future phase III study.

Trial registration: ClinicalTrials.gov Identifier: NCT05136560.

Keywords: Dexamethasone; Glucocorticoids; Sepsis.

Conflict of interest statement

CONFLICT OF INTEREST

Kyuseok Kim serves as an editor of the Clinical and Experimental Emergency Medicine, but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflict of interest relevant to this article was reported.

Figures

Fig. 1.
Fig. 1.
DEXA-SEPSIS study flow. DEX, dexamethasone.
Fig. 2.
Fig. 2.
Blinded technique. NS, normal saline; IP, investigational product; DEX, dexamethasone.
Fig. 3.
Fig. 3.
Primary and secondary outcomes. ICU, intensive care unit; SOFA, Sequential Organ Failure Assessment.

References

    1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–10.
    1. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11.
    1. Vincent JL, Sakr Y, Singer M, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323:1478–87.
    1. Kim J, Kim K, Lee H, Ahn S. Epidemiology of sepsis in Korea: a population-based study of incidence, mortality, cost and risk factors for death in sepsis. Clin Exp Emerg Med. 2019;6:49–63.
    1. Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing sepsis as a global health priority: a WHO resolution. N Engl J Med. 2017;377:414–7.
    1. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49:e1063–143.
    1. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.
    1. Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378:809–18.
    1. Schumer W. Steroids in the treatment of clinical septic shock. Ann Surg. 1976;184:333–41.
    1. Sprung CL, Caralis PV, Marcial EH, et al. The effects of highdose corticosteroids in patients with septic shock: a prospective, controlled study. N Engl J Med. 1984;311:1137–43.
    1. Bone RC, Fisher CJ, Jr, Clemmer TP, Slotman GJ, Metz CA, Balk RA. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987;317:653–8.
    1. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378:797–808.
    1. Zhang S, Chang W, Xie J, Wu Z, Yang Y, Qiu H. The efficacy, safety, and optimal regimen of corticosteroids in sepsis: a Bayesian network meta-analysis. Crit Care Explor. 2020;2:e0094.
    1. Cicarelli DD, Vieira JE, Bensenor FE. Early dexamethasone treatment for septic shock patients: a prospective randomized clinical trial. Sao Paulo Med J. 2007;125:237–41.
    1. Park YJ, Lee MJ, Bae J, et al. Effects of glucocorticoid therapy on sepsis depend both on the dose of steroids and on the severity and phase of the animal sepsis model. Life (Basel) 2022;12:421.

Source: PubMed

3
Se inscrever