Regular exercise is associated with a reduction in the risk of NAFLD and decreased liver enzymes in individuals with NAFLD independent of obesity in Korean adults

Ji Cheol Bae, Sunghwan Suh, Se Eun Park, Eun Jung Rhee, Cheol Young Park, Ki Won Oh, Sung Woo Park, Sun Woo Kim, Kyu Yeon Hur, Jae Hyeon Kim, Myung-Shik Lee, Moon Kyu Lee, Kwang-Won Kim, Won-Young Lee, Ji Cheol Bae, Sunghwan Suh, Se Eun Park, Eun Jung Rhee, Cheol Young Park, Ki Won Oh, Sung Woo Park, Sun Woo Kim, Kyu Yeon Hur, Jae Hyeon Kim, Myung-Shik Lee, Moon Kyu Lee, Kwang-Won Kim, Won-Young Lee

Abstract

Background: We evaluated the association of regular physical exercise with the presence of non-alcoholic fatty liver disease (NAFLD) and liver enzymes in relation to obesity and insulin resistance.

Methodology/principal findings: A cross-sectional analysis was conducted in 72,359 healthy Korean adults without diabetes who participated in a comprehensive health check-up. Subjects who have been exercising regularly (more than 3 times per week, at least for 30 minutes each time and for consecutive 3 month) were categorized into exercise group. All subjects were categorized into deciles based on their body mass index (BMI) and we estimated the odds ratios (ORs) for having NAFLD according to exercise regularity in each decile. The diagnosis of NAFLD was based on ultrasonography findings. Individuals with NAFLD (n = 19,921) were analyzed separately to evaluate ORs for having elevated liver enzymes based on regularity of exercise. The risk for NAFLD was significantly reduced in exercise group with age- and sex-adjusted ORs of 0.53-0.72 for all BMI deciles except at BMI categories of <19.6 and 20.7-21.6 kg/m(2). While no difference was seen in BMI between subjects in exercise and non-exercise group across the BMI deciles, the values of body fat percentage and metabolic risk factors differed. Among NAFLD patients, subjects in exercise group had a lower risk for having elevated liver enzymes with multivariable adjusted OR of 0.85 (95% CI 0.74-0.99, for AST) and 0.74 (95% CI 0.67-0.81, for ALT) than did subjects in non-exercise group.

Conclusions/significance: Regular exercise was associated with a reduced risk for having NAFLD and decreased liver enzymes in patients with NAFLD, and this relationship was also independent of obesity.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. The risk for NAFLD by…
Figure 1. The risk for NAFLD by exercise regularity analyzed separately according to the BMI deciles.
A) Adjusted for age and sex. B) Adjusted for age, sex, and body fat percentage. Odds ratios were estimated from binary logistic regression analysis.
Figure 2. Association of metabolic risk factors…
Figure 2. Association of metabolic risk factors with exercise regularity across the BMI level. Adjusted for age and sex.

References

    1. Tiniakos DG, Vos MB, Brunt EM (2010) Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 5: 145–171.
    1. Bae JC, Cho YK, Lee WY, Seo HI, Rhee EJ, et al. (2010) Impact of nonalcoholic fatty liver disease on insulin resistance in relation to HbA1c levels in nondiabetic subjects. Am J Gastroenterol 105: 2389–2395.
    1. Stefan N, Kantartzis K, Haring HU (2008) Causes and metabolic consequences of Fatty liver. Endocr Rev 29: 939–960.
    1. Bae JC, Rhee EJ, Lee WY, Park SE, Park CY, et al. (2011) Combined effect of nonalcoholic fatty liver disease and impaired fasting glucose on the development of type 2 diabetes: a 4-year retrospective longitudinal study. Diabetes Care 34: 727–729.
    1. Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51: 679–689.
    1. Booth FW, Laye MJ, Lees SJ, Rector RS, Thyfault JP (2008) Reduced physical activity and risk of chronic disease: the biology behind the consequences. Eur J Appl Physiol 102(4): 381–390.
    1. Thoma C, Day CP, Trenell MI (2012) Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol 56(1): 255–266.
    1. Malavolti M, Mussi C, Poli M, Fantuzzi AL, Salvioli G, et al. (2003) Cross-calibration of eight-polar bioelectrical impedance analysis versus dual-energy X-ray absorptiometry for the assessment of total and appendicular body composition in healthy subjects aged 21–82 years. Ann Hum Biol 30: 380–391.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412–419.
    1. Saverymuttu SH, Joseph AE, Maxwell JD (1986) Ultrasound scanning in the detection of hepatic fibrosis and steatosis. Br Med J (Clin Res Ed) 292: 13–15.
    1. Jeon CY, Lokken RP, Hu FB, van Dam RM (2007) Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care 30: 744–752.
    1. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, et al. (2011) Harrison's Principles of Internal Medicine. 18th ed. The McGraw-Hill 2: 3588–3589.
    1. Johnson NA, Sachinwalla T, Walton DW, Smith K, Armstrong A, et al. (2009) Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology 50: 1105–1112.
    1. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Zvibel I, et al. (2008) Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study. Hepatology 48: 1791–1798.
    1. Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, et al. (2011) Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 60: 1278–1283.
    1. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ (2001) Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286: 1218–1227.
    1. Utzschneider KM, Kahn SE (2006) Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91: 4753–4761.
    1. Harrison SA, Day CP (2007) Benefits of lifestyle modification in NAFLD. Gut 56: 1760–1769.
    1. Wong SL, Katzmarzyk P, Nichaman MZ, Church TS, Blair SN, et al. (2004) Cardiorespiratory fitness is associated with lower abdominal fat independent of body mass index. Med Sci Sports Exerc 36: 286–291.
    1. Blair SN (1993) Evidence for success of exercise in weight loss and control. Ann Intern Med 119: 702–706.
    1. Boden G, Chen X, DeSantis RA, Kendrick Z (1993) Effects of age and body fat on insulin resistance in healthy men. Diabetes Care 16, 728–733.
    1. Bell LM, Watts K, Siafarikas A, Thompson A, Ratnam N, et al. (2007) Exercise alone reduces insulin resistance in obese children independently of changes in body composition. J Clin Endocrinol Metab 92: 4230–4235.
    1. Kistler K, Brunt EM, Clark JM, Diehl AM, Sallis JF, et al. (2011) NASH Clinical Research Network. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease . Am J Gastroenterol 106: 460–468.
    1. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94: 2467–2474.
    1. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, et al. (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37: 917–923.
    1. Ueno T, Sugawara H, Sujaku K, Hashimoto O, Tsuji R, et al. (1997) Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. J Hepatol 27: 103–107.
    1. Hickman IJ, Jonsson JR, Prins JB, Ash S, Purdie DM, et al. (2004) Modest weight loss and physical activity in overweight patients with chronic liver disease results in sustained improvements in alanine aminotransferase, fasting insulin, and quality of life. Gut 53: 413–419.
    1. Kantartzis K, Thamer C, Peter A, Machann J, Schick F, et al. (2009) High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut 58: 1281–1288.
    1. Johnson NA, George J (2010) Fitness versus fatness: moving beyond weight loss in nonalcoholic fatty liver disease. Hepatology 52: 370–381.
    1. Wei Y, Rector RS, Thyfault JP, Ibdah JA (2008) Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol 14: 193–199.
    1. Richter EA, Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J 418: 261–275.
    1. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9: 407–416.
    1. Keating SE, Hackett DA, George J, Johnson NA (2012) Exercise and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol. Jul 57: 157–166.
    1. Sullivan S, Kirk EP, Mittendorfer B, Patterson BW, Klein S (2012) Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology. 2012 Jun 55(6): 1738–45.
    1. World Health Organisation The Asia Pacific Perspective. Redefining obesity and its treatment. Available: 2000. Accessed: 2011 Nov 3.
    1. Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, et al. (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42: 44–52.
    1. Brodney S, McPherson RS, Carpenter RS, Welten D, Blair SN (2001) Nutrient intake of physically fit and unfit men and women. Med Sci Sports Exerc 33: 459–467.
    1. Westerbacka J, Lammi K, Hakkinen AM, Rissanen A, Salminen I, et al. (2005) Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab 90: 2804–2809.

Source: PubMed

3
Se inscrever