A Metabolomics Approach to the Identification of Urinary Biomarkers of Pea Intake

Pedapati S C Sri Harsha, Roshaida Abdul Wahab, Catalina Cuparencu, Lars Ove Dragsted, Lorraine Brennan, Pedapati S C Sri Harsha, Roshaida Abdul Wahab, Catalina Cuparencu, Lars Ove Dragsted, Lorraine Brennan

Abstract

A significant body of evidence demonstrates that isoflavone metabolites are good markers of soy intake, while research is lacking on specific markers of other leguminous sources such as peas. In this context, the objective of our current study was to identify biomarkers of pea intake using an untargeted metabolomics approach. A randomized cross-over acute intervention study was conducted on eleven participants who consumed peas and couscous (control food) in random order. The urine samples were collected in fasting state and postprandially at regular intervals and were further analysed by ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF-MS). Multivariate statistical analysis resulted in robust Partial least squares Discriminant Analysis (PLS-DA) models obtained for comparison of fasting against the postprandial time points (0 h vs. 4 h, (R²X = 0.41, Q² = 0.4); 0 h vs. 6 h, ((R²X = 0.517, Q² = 0.495)). Variables with variable importance of projection (VIP) scores ≥1.5 obtained from the PLS-DA plot were considered discriminant between the two time points. Repeated measures analysis of variance (ANOVA) was performed to identify features with a significant time effect. Assessment of the time course profile revealed that ten features displayed a differential time course following peas consumption compared to the control food. The interesting features were tentatively identified using accurate mass data and confirmed by tandem mass spectrometry (MS using commercial spectral databases and authentic standards. 2-Isopropylmalic acid, asparaginyl valine and N-carbamoyl-2-amino-2-(4-hydroxyphenyl) acetic acid were identified as markers reflecting pea intake. The three markers also increased in a dose-dependent manner in a randomized intervention study and were further confirmed in an independent intervention study. Overall, key validation criteria were met for the successfully identified pea biomarkers. Future work will examine their use in nutritional epidemiology studies.

Keywords: biomarkers; dietary assessment; metabolomics; peas.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Partial least square discriminant analysis (PLS-DA) of Ultra-Performance Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry (UPLC-QTOF-MS) urine data of time point 0 (■) and time point 4 h post consumption of peas (□). Q2, 0.4; R2X, 0.41; t [1], PLS component 1; t [2], PLS component 2. At the timepoint 4 h, urine samples were unavailable for two participants.
Figure 2
Figure 2
Kinetics of the selected discriminating negative ion mode features obtained from the discovery study represented with accurate mass (176.06838 (A); 231.1221 (B); 103.9369 (C); 398.0101 (D); and 556.2011 (E)) after pea intake and compared with control food couscous (p < 0.05). Values are mean ± SEMs. X-axis values represent time course in hours and Y-axis values represent osmolality normalized peak intensity.
Figure 2
Figure 2
Kinetics of the selected discriminating negative ion mode features obtained from the discovery study represented with accurate mass (176.06838 (A); 231.1221 (B); 103.9369 (C); 398.0101 (D); and 556.2011 (E)) after pea intake and compared with control food couscous (p < 0.05). Values are mean ± SEMs. X-axis values represent time course in hours and Y-axis values represent osmolality normalized peak intensity.
Figure 3
Figure 3
Kinetics of the selected discriminating positive ion mode features obtained from the discovery study represented with accurate mass (231.1221 (A); 168.0288 (B); 152.0706 (C); 325.0796 (D); and 210.0642 (E)) after pea intake and compared with control food couscous (p < 0.05). Values are mean ± SEMs. X-axis values represent time course in hours and Y-axis values represent osmolality normalized peak intensity.
Figure 3
Figure 3
Kinetics of the selected discriminating positive ion mode features obtained from the discovery study represented with accurate mass (231.1221 (A); 168.0288 (B); 152.0706 (C); 325.0796 (D); and 210.0642 (E)) after pea intake and compared with control food couscous (p < 0.05). Values are mean ± SEMs. X-axis values represent time course in hours and Y-axis values represent osmolality normalized peak intensity.
Figure 4
Figure 4
MS/MS spectra of 2-Isopropylmalic acid at average collision energies (10, 20, 40 eV) of: a pure analytical standard (A); and in the urine sample (B); extracted ion chromatogram (EIC) (C); and Find by Formula spectrum (D).
Figure 4
Figure 4
MS/MS spectra of 2-Isopropylmalic acid at average collision energies (10, 20, 40 eV) of: a pure analytical standard (A); and in the urine sample (B); extracted ion chromatogram (EIC) (C); and Find by Formula spectrum (D).
Figure 5
Figure 5
Urinary 2-Isopropylmalic acid (2-IPMA) (A); Asparaginyl valine (Asp-Val) (B); and N-Carbamoyl-2-amino-2-(4-hydroxyphenyl) acetic acid (NC) (C) demonstrated a dose–response to intake of peas from the dose–response study. Values are means ± SEMs (n = 12). Participants consumed a low (40 g) (L), medium (75 g) or high (165 g) portion of peas as part of their habitual diet for four consecutive days for each intervention week and first void urine sample collected on the fifth day was analysed. X-axis values represent pea intake (g); Y-axis values represent peak area ratio. Peak area ratio is obtained by dividing the peak area of the sample with that of the internal standard.

References

    1. Baik I., Cho N.H., Kim S.H., Shin C. Dietary information improves cardiovascular disease risk prediction models. Eur. J. Clin. Nutr. 2013;67:25–30. doi: 10.1038/ejcn.2012.175.
    1. Hadley C.W., Miller E.C., Schwartz S.J., Clinton S.K. Tomatoes, lycopene, and prostate cancer: Progress and promise. Exp. Biol. Med. 2002;227:869–880. doi: 10.1177/153537020222701006.
    1. Streppel M.T., Sluik D., van Yperen J.F., Geelen A., Hofman A., Franco O.H., Witteman J.C.M., Feskens E.J.M. Nutrient-rich foods, cardiovascular diseases and all-cause mortality: The Rotterdam study. Eur. J. Clin. Nutr. 2014;68:741–747. doi: 10.1038/ejcn.2014.35.
    1. Bingham S.A. Biomarkers in nutritional epidemiology. Public Health Nutr. 2002;5:821–827. doi: 10.1079/PHN2002368.
    1. Kipnis V., Midthune D., Freedman L., Bingham S., Day N.E., Riboli E., Ferrari P., Carroll R.J. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002;5:915–923. doi: 10.1079/PHN2002383.
    1. Shim J.S., Oh K., Kim H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health. 2014;36:e2014009. doi: 10.4178/epih/e2014009.
    1. Hedrick V.E., Dietrich A.M., Estabrooks P.A., Savla J., Serrano E., Davy B.M. Dietary biomarkers: Advances, limitations and future directions. Nutr. J. 2012;11 doi: 10.1186/1475-2891-11-109.
    1. Hardin D.S. Validating dietary intake with biochemical markers. J. Am. Diet. Assoc. 2009;109:1698–1699. doi: 10.1016/j.jada.2009.07.014.
    1. McCabe-Sellers B. Advancing the art and science of dietary assessment through technology. J. Am. Diet. Assoc. 2010;110:52–54. doi: 10.1016/j.jada.2009.10.014.
    1. Brennan L. Metabolomics: A tool to aid dietary assessment in nutrition. Curr. Opin. Food Sci. 2017;16:96–99. doi: 10.1016/j.cofs.2017.09.003.
    1. Andersen M.B.S., Kristensen M., Manach C., Pujos-Guillot E., Poulsen S.K., Larsen T.M., Astrup A., Dragsted L. Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Anal. Bioanal. Chem. 2014;406:1829–1844. doi: 10.1007/s00216-013-7498-5.
    1. Edmands W.M.B., Beckonert O.P., Stella C., Campbell A., Lake B.G., Lindon J.C., Holmes E., Gooderham N.J. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J. Proteome. Res. 2011;10:4513–4521. doi: 10.1021/pr200326k.
    1. Heinzmann S.S., Brown I.J., Chan Q., Bictash M., Dumas M.E., Kochhar S., Stamler J., Holmes E., Elliott P., Nicholson J.K. Metabolic profiling strategy for discovery of nutritional biomarkers: Proline betaine as a marker of citrus consumption. Am. J. Clin. Nutr. 2010;92:436–443. doi: 10.3945/ajcn.2010.29672.
    1. Lloyd A.J., Beckmann M., Fave G., Mathers J.C., Draper J. Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Brit. J. Nutr. 2011;106:812–824. doi: 10.1017/S0007114511001164.
    1. Pujos-Guillot E., Hubert J., Martin J.F., Lyan B., Quintana M., Claude S., Chabanas B., Rothwell J.A., Bennetau-Pelissero C., Scalbert A., et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: Citrus fruit as a case study. J. Proteome Res. 2013;12:1645–1659. doi: 10.1021/pr300997c.
    1. Carrizo D., Chevallier O.P., Woodside J.V., Brennan S.F., Cantwell M.M., Cuskelly G., Elliott C.T. Untargeted metabolomic analysis of human serum samples associated with different levels of red meat consumption: A possible indicator of type 2 diabetes? Food Chem. 2017;221:214–221. doi: 10.1016/j.foodchem.2016.10.056.
    1. Gibbons H., McNulty B.A., Nugent A.P., Walton J., Flynn A., Gibney M.J., Brennan L. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. Am. J. Clin. Nutr. 2015;101:471–477. doi: 10.3945/ajcn.114.095604.
    1. Lang R., Wahl A., Stark T., Hofmann T. Urinary N-methylpyridinium and trigonelline as candidate dietary biomarkers of coffee consumption. Mol. Nutr. Food Res. 2011;55:1613–1623. doi: 10.1002/mnfr.201000656.
    1. Van Velzen E.J.J., Westerhuis J.A., van Duynhoven J.P.M., van Dorsten F.A., Grun C.H., Jacobs D.M., Duchateau G.S.M.J.E., Vis D.J., Smilde A.K. Phenotyping Tea Consumers by nutrikinetic analysis of polyphenolic end-metabolites. J. Proteome Res. 2009;8:3317–3330. doi: 10.1021/pr801071p.
    1. Garcia-Perez I., Posma J.M., Chambers E.S., Nicholson J.K., Mathers J.C., Beckmann M., Draper J., Holmes E., Frost G. An analytical pipeline for quantitative characterization of dietary intake: Application to assess grape intake. J. Agr. Food Chem. 2016;64:2423–2431. doi: 10.1021/acs.jafc.5b05878.
    1. Gibbons H., Michielsen C.J.R., Rundle M., Frost G., McNulty B.A., Nugent A.P., Walton J., Flynn A., Gibney M.J., Brennan L. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food Res. 2017;61:1700037. doi: 10.1002/mnfr.201700037.
    1. Ross A.B. Present status and perspectives on the use of alkylresorcinols as biomarkers of wholegrain wheat and rye intake. J. Nutr. MeTab. 2012;2012:462967. doi: 10.1155/2012/462967.
    1. Polak R., Phillips E.M., Campbell A. Legumes: Health benefits and culinary approaches to increase intake. Clin. Diabetes. 2015;33:198–205. doi: 10.2337/diaclin.33.4.198.
    1. Messina M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999;70:S439–S450. doi: 10.1093/ajcn/70.3.439s.
    1. Kushi L.H., Meyer K.A., Jacobs D.R., Jr. Cereals, legumes, and chronic disease risk reduction: Evidence from epidemiologic studies. Am. J. Clin. Nutr. 1999;70:S451–S458. doi: 10.1093/ajcn/70.3.451s.
    1. Wang S., Melnyk J.P., Tsao R., Marcone M.F. How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Res. Int. 2011;44:14–22. doi: 10.1016/j.foodres.2010.09.028.
    1. Kolonel L.N., Hankin J.H., Whittemore A.S., Wu A.H., Gallagher R.P., Wilkens L.R., John E.M., Howe G.R., Dreon D.M., West D.W., et al. Vegetables, fruits, legumes and prostate cancer: A multiethnic case-control study. Cancer Epidem. Biomar. 2000;9:795–804.
    1. Kamal-Eldin A., Moazzami A. Plant sterols and stanols as cholesterol-lowering ingredients in functional foods. Recent. Pat. Food Nutr. Agric. 2009;1:1–14. doi: 10.2174/2212798410901010001.
    1. Sri Harsha P.S.C., Wahab R.A., Aloy M.G., Madrid-Gambin F., Estruel-Amades S., Watzl B., Andres-Lacueva C., Brennan L. Biomarkers of legume intake in human intervention and observational studies: A systematic review. Genes Nutr. 2018;13:25. doi: 10.1186/s12263-018-0614-6.
    1. Lampe J.W. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J. Nutr. 2003;133:S956–S964. doi: 10.1093/jn/133.3.956S.
    1. Morimoto Y., Beckford F., Franke A.A., Maskarinec G. Urinary isoflavonoid excretion as a biomarker of dietary soy intake during two randomized soy trials. Asia. Pac. J. Clin. Nutr. 2014;23:205–209.
    1. Perera T., Young M.R., Zhang Z., Murphy G., Colburn N.H., Lanza E., Hartman T.J., Cross A.J., Bobe G. Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies. Mol. Nutr. Food Res. 2015;59:795–806. doi: 10.1002/mnfr.201400847.
    1. Bonetti A., Marotti I., Dinelli G. Urinary excretion of kaempferol from common beans (Phaseolus vulgaris L.) in humans. Int. J. Food Sci. Nutr. 2007;58:261–269. doi: 10.1080/09637480601154228.
    1. Posma J.M., Garcia-Perez I., Heaton J.C., Burdisso P., Mathers J.C., Draper J., Lewis M., Lindon J.C., Frost G., Holmes E., et al. Integrated analytical and statistical two-dimensional spectroscopy strategy for metabolite identification: Application to dietary biomarkers. Anal. Chem. 2017;89:3300–3309. doi: 10.1021/acs.analchem.6b03324.
    1. Dahl W.J., Foster L.M., Tyler R.T. Review of the health benefits of peas (Pisum sativum L.) Brit. J. Nutr. 2012;108:S3–S10. doi: 10.1017/S0007114512000852.
    1. Brouwer-Brolsma E.M., Brennan L., Drevon C.A., van Kranen H., Manach C., Dragsted L.O., Roche H.M., Andres-Lacueva C., Bakker S.J.L., Bouwman J., et al. Combining traditional dietary assessment methods with novel metabolomics techniques: Present efforts by the Food Biomarker Alliance. P. Nutr. Soc. 2017;76:619–627. doi: 10.1017/S0029665117003949.
    1. Cheung W., Keski-Rahkonen P., Assi N., Ferrari P., Freisling H., Rinaldi S., Slimani N., Zamora-Ros R., Rundle M., Frost G., et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 2017;105:600–608. doi: 10.3945/ajcn.116.146639.
    1. Munger L.H., Trimigno A., Picone G., Freiburghaus C., Pimentel G., Burton K.J., Pralong F.P., Vionnet N., Capozzi F., Badertscher R., et al. Identification of urinary food intake biomarkers for milk, cheese, and soy-based drink by untargeted GC-MS and NMR in healthy humans. J. Proteome Res. 2017;16:3321–3335. doi: 10.1021/acs.jproteome.7b00319.
    1. Yin X.F., Gibbons H., Rundle M., Frost G., McNulty B.A., Nugent A.P., Walton J., Flynn A., Gibney M.J., Brennan L. Estimation of chicken intake by adults using metabolomics-derived markers. J. Nutr. 2017;147:1850–1857. doi: 10.3945/jn.117.252197.
    1. Cuparencu C.S., Andersen M.B.S., Gurdeniz G., Schou S.S., Mortensen M.W., Raben A., Astrup A., Dragsted L.O. Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC-MS metabolomics: A meal study in adult men. Metabolomics. 2016;12:31. doi: 10.1007/s11306-015-0934-0.
    1. Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (cawg) metabolomics standards initiative (msi) Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2.
    1. Allen F., Greiner R., Wishart D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics. 2015;11:98–110. doi: 10.1007/s11306-014-0676-4.
    1. Gibbons H., Brennan L. Metabolomics as a tool in the identification of dietary biomarkers. P. Nutr. Soc. 2017;76:42–53. doi: 10.1017/S002966511600032X.
    1. Scalbert A., Brennan L., Manach C., Andres-Lacueva C., Dragsted L.O., Draper J., Rappaport S.M., van der Hooft J.J., Wishart D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014;99:1286–1308. doi: 10.3945/ajcn.113.076133.
    1. Atkinson W., Downer P., Lever M., Chambers S.T., George P.M. Effects of orange juice and proline betaine on glycine betaine and homocysteine in healthy male subjects. Eur. J. Nutr. 2007;46:446–452. doi: 10.1007/s00394-007-0684-5.
    1. May D.H., Navarro S.L., Ruczinski I., Hogan J., Ogata Y., Schwarz Y., Levy L., Holzman T., McIntosh M.W., Lampe J.W. Metabolomic profiling of urine: Response to a randomised, controlled feeding study of select fruits and vegetables, and application to an observational study. Brit. J. Nutr. 2013;110:1760–1770. doi: 10.1017/S000711451300127X.
    1. Fave G., Beckmann M., Lloyd A.J., Zhou S., Harold G., Lin W., Tailliart K., Xie L., Draper J., Mathers J.C. Development and validation of a standardized protocol to monitor human dietary exposure by metabolite fingerprinting of urine samples. Metabolomics. 2011;7:469–484. doi: 10.1007/s11306-011-0289-0.
    1. Dragsted L.O., Gao Q., Scalbert A., Vergeres G., Kolehmainen M., Manach C., Brennan L., Afman L.A., Wishart D.S., Lacueva C.A., et al. Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr. 2018;13:14. doi: 10.1186/s12263-018-0603-9.
    1. Bernillon S., Biais B., Deborde C., Maucourt M., Cabasson C., Gibon Y., Hansen T.H., Husted S., de Vos R.C.H., Mumm R., et al. Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics. 2013;9:57–77. doi: 10.1007/s11306-012-0429-1.
    1. Ammar S., Contreras M.D., Belguith-Hadrich O., Bouaziz M., Segura-Carretero A. New insights into the qualitative phenolic profile of Ficus carica L. fruits and leaves from Tunisia using ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry and their antioxidant activity. Rsc. Adv. 2015;5:20035–20050. doi: 10.1039/C4RA16746E.
    1. Abu-Reidah I.M., Contreras M.M., Arraez-Roman D., Segura-Carretero A., Fernandez-Gutierrez A. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J. Chromatogr. A. 2013;1313:212–227. doi: 10.1016/j.chroma.2013.07.020.
    1. Eastwood M.A. Principles of Human Nutrition. 1st ed. Chapman and Hall; London, UK: 1997.

Source: PubMed

3
Se inscrever