Impact of Resveratrol on Glucose Control, Hippocampal Structure and Connectivity, and Memory Performance in Patients with Mild Cognitive Impairment

Theresa Köbe, A Veronica Witte, Ariane Schnelle, Valentina A Tesky, Johannes Pantel, Jan-Philipp Schuchardt, Andreas Hahn, Jens Bohlken, Ulrike Grittner, Agnes Flöel, Theresa Köbe, A Veronica Witte, Ariane Schnelle, Valentina A Tesky, Johannes Pantel, Jan-Philipp Schuchardt, Andreas Hahn, Jens Bohlken, Ulrike Grittner, Agnes Flöel

Abstract

In healthy older adults, resveratrol supplementation has been shown to improve long-term glucose control, resting-state functional connectivity (RSFC) of the hippocampus, and memory function. Here, we aimed to investigate if these beneficial effects extend to individuals at high-risk for dementia, i.e., patients with mild cognitive impairment (MCI). In a randomized, double-blind interventional study, 40 well-characterized patients with MCI (21 females; 50-80 years) completed 26 weeks of resveratrol (200 mg/d; n = 18) or placebo (1,015 mg/d olive oil; n = 22) intake. Serum levels of glucose, glycated hemoglobin A1c and insulin were determined before and after intervention. Moreover, cerebral magnetic resonance imaging (MRI) (3T) (n = 14 vs. 16) was conducted to analyze hippocampus volume, microstructure and RSFC, and neuropsychological testing was conducted to assess learning and memory (primary endpoint) at both time points. In comparison to the control group, resveratrol supplementation resulted in lower glycated hemoglobin A1c concentration with a moderate effect size (ANOVARMp = 0.059, Cohen's d = 0.66), higher RSFC between right anterior hippocampus and right angular cortex (p < 0.001), and led to a moderate preservation of left anterior hippocampus volume (ANOVARMp = 0.061, Cohen's d = 0.68). No significant differences in memory performance emerged between groups. This proof-of-concept study indicates for the first-time that resveratrol intake may reduce glycated hemoglobin A1c, preserves hippocampus volume, and improves hippocampus RSFC in at-risk patients for dementia. Larger trials with longer intervention time should now determine if these benefits can be validated and extended to cognitive function.

Keywords: MCI; hippocampus; memory performance; resting-state functional connectivity; resveratrol.

Figures

Figure 1
Figure 1
Study flow chart. In total, 110 MCI patients were screened on telephone, of which 88 were invited for baseline assessment. Forty-two patients met the inclusion criteria and were randomized to the resveratrol intervention group (n = 19) or to the placebo intervention group (n = 23). Two patients did not complete participation due to time constraints. Thus, 40 patients successfully completed the intervention over 26 weeks (resveratrol n = 18; placebo n = 22). Before and after the intervention period, patients underwent a standardized medical examination, including neuropsychological testing, cerebral magnetic resonance imaging (MRI), anthropometry, and fasting blood draw for detection of serum parameters and APOE e4 status. MRI scans from both time points baseline and follow-up were not available for 10 patients (scheduling problems at follow-up), leaving 30 patients for longitudinal MRI analysis (resveratrol n = 14; placebo n = 16).
Figure 2
Figure 2
A moderate, but non-significant decrease in the long-term glucose marker HbA1c after 26 weeks resveratrol intervention (n = 18) compared to placebo intervention (n = 19) (ANCOVARMp = 0.059, d = 0.66). The decrease reached statistical significance when analyzing the resveratrol group separately (paired t-test p = 0.005). HbA1c, glycated hemoglobin A1c.
Figure 3
Figure 3
Significant increase in resting-state functional connectivity between the right HC and the right angular cortex after 26 weeks resveratrol intervention (n = 14) compared to placebo intervention (n = 16). Color bar indicate t-values of significant voxels (resveratrol intervention > placebo intervention; cluster-based thresholding, p < 0.05). Individual masks of the left and right HC were used as seeds in the analysis. No group differences were observed for the opposite contrast (placebo intervention > resveratrol intervention), and when using the left HC as seed. For better visualization we superimposed the t-map on the MNI-template. Images are displayed in neurological convention, coordinates in mm according to MNI space. A, anterior; H, hippocampus; L, left; R, right; P, posterior.
Figure 4
Figure 4
A moderate, but non-significant, preservation of gray matter atrophy of the left, particularly anterior, hippocampus after 26 weeks resveratrol supplementation (n = 14) compared to placebo (n = 16) (ANCOVARM; left Hippocampus, p = 0.084, d = 0.68; left anterior Hippocampus, p = 0.061, d = 0.74). Error bars indicate standard error.

References

    1. Andrews-Hanna J. R., Reidler J. S., Sepulcre J., Poulin R., Buckner R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562. 10.1016/j.neuron.2010.02.005
    1. Bhatt J. K., Thomas S., Nanjan M. J. (2012). Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 32, 537–541. 10.1016/j.nutres.2012.06.003
    1. Biswal B. B., Mennes M., Zuo X. N., Gohel S., Kelly C., Smith S. M., et al. . (2010). Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107, 4734–4739. 10.1073/pnas.0911855107
    1. Brasnyo P., Molnar G. A., Mohas M., Marko L., Laczy B., Cseh J., et al. . (2011). Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 106, 383–389. 10.1017/S0007114511000316
    1. Brickman A. M., Khan U. A., Provenzano F. A., Yeung L. K., Suzuki W., Schroeter H., et al. . (2014). Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat. Neurosci. 17, 1798–1803. 10.1038/nn.3850
    1. Broman-Fulks J. J., Canu W. H., Trout K. L., Nieman D. C. (2012). The effects of quercetin supplementation on cognitive functioning in a community sample: a randomized, placebo-controlled trial. Ther. Adv. Psychopharmacol. 2, 131–138. 10.1177/2045125312445894
    1. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. . (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923. 10.1126/science.8346443
    1. Crandall J. P., Oram V., Trandafirescu G., Reid M., Kishore P., Hawkins M., et al. . (2012). Pilot study of resveratrol in older adults with impaired glucose tolerance. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 67, 1307–1312. 10.1093/gerona/glr235
    1. Dal-Pan A., Pifferi F., Marchal J., Picq J. L., Aujard F. (2011). Cognitive performances are selectively enhanced during chronic caloric restriction or resveratrol supplementation in a primate. PLoS ONE 6:e16581 10.1371/journal.pone.0016581
    1. de Jager C. A., Oulhaj A., Jacoby R., Refsum H., Smith A. D. (2012). Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int. J. Geriatr. Psychiatry 27, 592–600. 10.1002/gps.2758
    1. den Heijer T., der Lijn F. V., Vernooij M. W., de Groot M., Koudstaal P. J., der Lugt A., et al. . (2012). Structural and diffusion MRI measures of the hippocampus and memory performance. Neuroimage 63, 1782–1789. 10.1016/j.neuroimage.2012.08.067
    1. Dennis E. L., Thompson P. M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychol. Rev. 24, 49–62. 10.1007/s11065-014-9249-6
    1. De Santi C., Pietrabissa A., Spisni R., Mosca F., Pacifici G. M. (2000). Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids. Xenobiotica 30, 857–866. 10.1080/004982500433282
    1. Douaud G., Refsum H., de Jager C. A., Jacoby R., Nichols T. E., Smith S. M., et al. . (2013). Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl. Acad. Sci. U.S.A. 110, 9523–9528. 10.1073/pnas.1301816110
    1. Egan M. F., Kojima M., Callicott J. H., Goldberg T. E., Kolachana B. S., Bertolino A., et al. . (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269. 10.1016/S0092-8674(03)00035-7
    1. Frey I., Berg A., Grathwohl D., Keul J. (1999). Freiburg Questionnaire of physical activity–development, evaluation and application. Soz. Praventivmed. 44, 55–64. 10.1007/BF01667127
    1. Grayson D. S., Kroenke C. D., Neuringer M., Fair D. A. (2014). Dietary omega-3 fatty acids modulate large-scale systems organization in the rhesus macaque brain. J. Neurosci. 34, 2065–2074. 10.1523/JNEUROSCI.3038-13.2014
    1. Gustafson D. R., Clare Morris M., Scarmeas N., Shah R. C., Sijben J., Yaffe K., et al. . (2015). New perspectives on Alzheimer's disease and nutrition. J. Alzheimer's Dis. 46, 1111–1127. 10.3233/JAD-150084
    1. Harada N., Zhao J., Kurihara H., Nakagata N., Okajima K. (2011). Resveratrol improves cognitive function in mice by increasing production of insulin-like growth factor-I in the hippocampus. J. Nutr. Biochem. 22, 1150–1159. 10.1016/j.jnutbio.2010.09.016
    1. Huhn S., Kharabian Masouleh S., Stumvoll M., Villringer A., Witte A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Front. Aging Neurosci. 7:132. 10.3389/fnagi.2015.00132
    1. Jack C. R., Jr., Knopman D. S., Jagust W. J., Petersen R. C., Weiner M. W., Aisen P. S., et al. . (2013). Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216. 10.1016/S1474-4422(12)70291-0
    1. Kennedy D. O., Wightman E. L., Reay J. L., Lietz G., Okello E. J., Wilde A., et al. . (2010). Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am. J. Clin. Nutr. 91, 1590–1597. 10.3945/ajcn.2009.28641
    1. Kerti L., Witte A. V., Winkler A., Grittner U., Rujescu D., Flöel A. (2013). Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology 81, 1746–1752. 10.1212/
    1. Kim D., Nguyen M. D., Dobbin M. M., Fischer A., Sananbenesi F., Rodgers J. T., et al. . (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169–3179. 10.1038/sj.emboj.7601758
    1. Köbe T., Witte A. V., Schnelle A., Lesemann A., Fabian S., Tesky V. A., et al. . (2016). Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage 131, 226–238. 10.1016/j.neuroimage.2015.09.050
    1. Kodali M., Parihar V. K., Hattiangady B., Mishra V., Shuai B., Shetty A. K. (2015). Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci. Rep. 5:8075. 10.1038/srep08075
    1. Krohne H., Egloff B., Kohlmann C., Tausch A. (1996). Untersuchung mit einer deutschen Version der “Positive and Negative Affective Schedule” (PANAS). Diagnostica 42, 139–156.
    1. Kuhner C., Burger C., Keller F., Hautzinger M. (2007). Reliability and validity of the Revised Beck Depression Inventory (BDI-II). Results from German samples. Der. Nervenarzt. 78, 651–656. 10.1007/s00115-006-2098-7
    1. Laux L., Glanzmann P., Schaffner P., Spielberger C. D. (1981). Das State-Trait-Angstinventar. Theoretische Grundlagen und Handanweisung. Weinheim: Beltz Test GmbH.
    1. Lezak M. (2004). Neuropsychological Assessment. New York, NY; Oxford: Oxford University Press.
    1. Li X. (2013). SIRT1 and energy metabolism. Acta Biochim. Biophys. Sin. (Shanghai). 45, 51–60. 10.1093/abbs/gms108
    1. McCormick C., Protzner A., Barnett A., Cohn M., Valiante T., McAndrews M. (2014). Linking DMN connectivity to episodic memory capacity: what can we learn from patients with medial temporal lobe damage? Neuroimage Clin. 5, 188–196. 10.1016/j.nicl.2014.05.008
    1. McDonald C. R., McEvoy L. K., Gharapetian L., Fennema-Notestine C., Hagler D. J., Jr., Holland D., et al. . (2009). Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73, 457–465. 10.1212/WNL.0b013e3181b16431
    1. Morris J. C., Heyman A., Mohs R. C., Hughes J. P., van Belle G., Fillenbaum G., et al. . (1989). The consortium to establish a registry for Alzheimer's disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 39, 1159–1165. 10.1212/WNL.39.9.1159
    1. O'Dwyer L., Lamberton F., Matura S., Tanner C., Scheibe M., Miller J., et al. . (2012). Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PLoS ONE 7:e48895. 10.1371/journal.pone.0048895
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. 10.1016/0028-3932(71)90067-4
    1. Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., Kokmen E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308. 10.1001/archneur.56.3.303
    1. Pievani M., de Haan W., Wu T., Seeley W. W., Frisoni G. B. (2011). Functional network disruption in the degenerative dementias. Lancet Neurol. 10, 829–843. 10.1016/S1474-4422(11)70158-2
    1. Porquet D., Casadesus G., Bayod S., Vicente A., Canudas A. M., Vilaplana J., et al. . (2013). Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). 35, 1851–1865. 10.1007/s11357-012-9489-4
    1. Prvulovic D., Bokde A. L., Faltraco F., Hampel H. (2011). Functional magnetic resonance imaging as a dynamic candidate biomarker for Alzheimer's disease. Prog. Neurobiol. 95, 557–569. 10.1016/j.pneurobio.2011.05.008
    1. Raz N., Amedi A., Zohary E. (2005). V1 activation in congenitally blind humans is associated with episodic retrieval. Cereb. Cortex 15, 1459–1468. 10.1093/cercor/bhi026
    1. Ries M. L., Carlsson C. M., Rowley H. A., Sager M. A., Gleason C. E., Asthana S., et al. . (2008). Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J. Am. Geriatr. Soc. 56, 920–934. 10.1111/j.1532-5415.2008.01684.x
    1. Rombouts S. A., Barkhof F., Goekoop R., Stam C. J., Scheltens P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum. Brain Mapp. 26, 231–239. 10.1002/hbm.20160
    1. Sheline Y. I., Morris J. C., Snyder A. Z., Price J. L., Yan Z., D'Angelo G., et al. (2010). APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. J. Neurosci. 30, 17035–17040. 10.1523/JNEUROSCI.3987-10.2010
    1. Stoltzfus J. C. (2011). Logistic regression: a brief primer. Acad. Emerg. Med. 18, 1099–1104. 10.1111/j.1553-2712.2011.01185.x
    1. Stranahan A. M., Mattson M. P. (2008). Impact of energy intake and expenditure on neuronal plasticity. Neuromol. Med. 10, 209–218. 10.1007/s12017-008-8043-0
    1. Timmers S., Konings E., Bilet L., Houtkooper R. H., van de Weijer T., Goossens G. H., et al. . (2011). Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622. 10.1016/j.cmet.2011.10.002
    1. Turner R. S., Thomas R. G., Craft S., van Dyck C. H., Mintzer J., Reynolds B. A., et al. . (2015). A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85, 1383–1391. 10.1212/WNL.0000000000002035
    1. Uddin L. Q., Supekar K., Amin H., Rykhlevskaia E., Nguyen D. A., Greicius M. D., et al. . (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb. Cortex 20, 2636–2646. 10.1093/cercor/bhq011
    1. Wiesmann M., Zerbi V., Jansen D., Haast R., Lutjohann D., Broersen L. M., et al. . (2016). A dietary treatment improves cerebral blood flow and brain connectivity in aging apoE4 mice. Neural Plast. 2016:6846721. 10.1155/2016/6846721
    1. Wightman E. L., Haskell-Ramsay C. F., Reay J. L., Williamson G., Dew T., Zhang W., et al. . (2015). The effects of chronic trans-resveratrol supplementation on aspects of cognitive function, mood, sleep, health and cerebral blood flow in healthy, young humans. Br. J. Nutr. 114, 1427–1437. 10.1017/S0007114515003037
    1. Willette A. A., Bendlin B. B., Colman R. J., Kastman E. K., Field A. S., Alexander A. L., et al. . (2012). Calorie restriction reduces the influence of glucoregulatory dysfunction on regional brain volume in aged rhesus monkeys. Diabetes 61, 1036–1042. 10.2337/db11-1187
    1. Witte A. V., Floel A. (2012). Effects of COMT polymorphisms on brain function and behavior in health and disease. Brain Res. Bull. 88, 418–428. 10.1016/j.brainresbull.2011.11.012
    1. Witte A. V., Kerti L., Margulies D. S., Floel A. (2014). Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 34, 7862–7870. 10.1523/JNEUROSCI.0385-14.2014
    1. Wittenberg G. M., Tsien J. Z. (2002). An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 25, 501–505. 10.1016/S0166-2236(02)02231-2
    1. Wong R. H., Berry N. M., Coates A. M., Buckley J. D., Bryan J., Kunz I., et al. . (2013). Chronic resveratrol consumption improves brachial flow-mediated dilatation in healthy obese adults. J. Hypertens. 31, 1819–1827. 10.1097/HJH.0b013e328362b9d6
    1. Zhao Y. N., Li W. F., Li F., Zhang Z., Dai Y. D., Xu A. L., et al. . (2013). Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem. Biophys. Res. Commun. 435, 597–602. 10.1016/j.bbrc.2013.05.025

Source: PubMed

3
Se inscrever