Tissue Flossing Around the Thigh Does Not Provide Acute Enhancement of Neuromuscular Function

Armin H Paravlic, Jure Segula, Kristina Drole, Vedran Hadzic, Maja Pajek, Janez Vodicar, Armin H Paravlic, Jure Segula, Kristina Drole, Vedran Hadzic, Maja Pajek, Janez Vodicar

Abstract

Nowadays, various methods are used for acute performance enhancement. The most recent of these is tissue flossing, which is becoming increasingly popular for both performance enhancement and rehabilitation. However, the effects of flossing on athletic performance have not been clearly demonstrated, which could be due to differences in the methodology used. In particular, the rest periods between the end of the preconditioning activity and the performance of the criterion task or assessment tools varied considerably in the published literature. Therefore, the present study aimed to investigate the effects of applying tissue flossing to the thigh on bilateral countermovement jump performance and contractile properties of vastus lateralis (VL) muscle. Nineteen recreational athletes (11 males; aged 23.1 ± 2.7 years) were randomly assigned to days of flossing application (3 sets for 2 min of flossing with 2 min rest between sets) with preset experimental pressure (EXP = 95 ± 17.4 mmHg) or control condition (CON = 18.9 ± 3.5 mmHg). The first part of the measurements was performed before and after warm-up consisting of 5 min of cycling followed by dynamic stretching and specific jumping exercises, while the second part consisted of six measurement points after flossing application (0.5, 3, 6, 9, 12, 15 min). The warm-up improved muscle response time (VL = -5%), contraction time (VL = -3.6%) muscle stiffness (VL = 17.5%), contraction velocity (VL = 23.5%), jump height (13.9%) and average power (10.5%). On the contrary, sustain time, half-relaxation time and take-off velocity stayed unaltered. Flossing, however, showed negative effects for muscle response time (F = 18.547, p < 0.001), contraction time (F = 14.899, p < 0.001), muscle stiffness (F = 8.365, p < 0.001), contraction velocity (F = 11.180, p < 0.001), jump height (F = 14.888, p < 0.001) and average power (F = 13.488, p < 0.001), whereas sustain time, half-relaxation time and take-off velocity were unaffected until the end of the study protocol regardless of condition assigned and/or time points of the assessment. It was found that the warm-up routine potentiated neuromuscular function, whereas the flossing protocol used in the current study resulted in fatigue rather than potentiation. Therefore, future studies aimed to investigate the dose-response relationship of different configurations of preconditioning activities on neuromuscular function are warranted.

Keywords: athletic performance; countermovement jump (CMJ); functional performance; ischemic preconditioning (IPC); potentiation; tensiomyography (TMG).

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Paravlic, Segula, Drole, Hadzic, Pajek and Vodicar.

Figures

FIGURE 1
FIGURE 1
The schematic diagram of the research methodology.

References

    1. Abazović E., Kovačević E., Kovač S., Bradić J. (2015). The Effect of Training of the Non-dominant Knee Muscles on Ipsi- and Contralateral Strength Gains. Ies 23, 177–182. 10.3233/IES-150579
    1. Abazovic E., Paravli A., Zubac D., Kova E. (2022). Decomposition of Tensiomyogram and Comparison with Torque Twitch Responses after post-activation Potentiation.
    1. Atkinson G., Nevill A. M. (1998). Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 26, 217–238. 10.2165/00007256-199826040-00002
    1. Barany M. (1967). ATPase Activity of Myosin Correlated with Speed of Muscle Shortening. J. Gen. Physiol. 50, 197–218. 10.1085/jgp.50.6.197
    1. Behm D. G., Kay A. D., Trajano G. S., Blazevich A. J. (2021). Mechanisms Underlying Performance Impairments Following Prolonged Static Stretching without a Comprehensive Warm-Up. Eur. J. Appl. Physiol. 121, 67–94. 10.1007/s00421-020-04538-8
    1. Berg H. E., Tedner B., Tesch P. A. (1993). Changes in Lower Limb Muscle Cross-Sectional Area and Tissue Fluid Volume after Transition from Standing to Supine. Acta Physiol. Scand. 148, 379–385. 10.1111/j.1748-1716.1993.tb09573.x
    1. Bishop D. (2003a). Warm up I. Sports Med. 33 (6), 439–454. 10.2165/00007256-200333060-00005
    1. Bishop D. (2003b). Warm up II. Sports Med. 33, 483–498. 10.2165/00007256-200333070-00002
    1. Chiu L. Z. F., Fry A. C., Weiss L. W., Schilling B. K., Brown L. E., Smith S. L. (2003). Postactivation Potentiation Response in Athletic and Recreationally Trained Individuals. J. Strength Cond. Res. 17, 671–677. 10.1519/00124278-200311000-00008
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd Editio. Hillsdale NJ: Lawrence Erlbaum Associates.
    1. Driller M., Mackay K., Mills B., Tavares F. (2017). Tissue Flossing on Ankle Range of Motion, Jump and Sprint Performance: A Follow-Up Study. Phys. Ther. Sport 28, 29–33. 10.1016/j.ptsp.2017.08.081
    1. Driller M. W., Overmayer R. G. (2017). The Effects of Tissue Flossing on Ankle Range of Motion and Jump Performance. Phys. Ther. Sport 25, 20–24. 10.1016/j.ptsp.2016.12.004
    1. Faul F., Erdfelder E., Lang A.-G., Buchner A. (2007). G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 39, 175–191. 10.3758/BF03193146
    1. Hamada T., Sale D. G., MacDougall J. D., Tarnopolsky M. A. (2000). Postactivation Potentiation, Fiber Type, and Twitch Contraction Time in Human Knee Extensor Muscles. J. Appl. Physiol. 88, 2131–2137. 10.1152/jappl.2000.88.6.2131
    1. Haugen T. A., Breitschädel F., Wiig H., Seiler S. (2021). Countermovement Jump Height in National-Team Athletes of Various Sports: A Framework for Practitioners and Scientists. Int. J. Sports Physiol. Perform. 16, 184–189. 10.1123/IJSPP.2019-0964
    1. Hogan M. C., Kohin S., Stary C. M., Hepple R. T. (1999). Rapid Force Recovery in Contracting Skeletal Muscle after Brief Ischemia Is Dependent on O2 Availability. J. Appl. Physiol. 87, 2225–2229. 10.1152/jappl.1999.87.6.2225
    1. Hopkins W. G. (2000). Measures of Reliability in Sports Medicine and Science. Sports Med. 30, 1–15. 10.2165/00007256-200030010-00001
    1. Howell A. K., Gaughan J. P., Cairns M. A., Faigenbaum A. D., Libonati J. R. (2001). The Effect of Muscle Hypoperfusion-Hyperemia on Repetitive Vertical Jump Performance. J. Strength Cond. Res. 15, 446–449. 10.1519/1533-4287(2001)015<0446:teomhh>;2
    1. Husmann F., Mittlmeier T., Bruhn S., Zschorlich V., Behrens M. (2018). Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery. Med. Sci. Sports Exerc. 50, 436–446. 10.1249/MSS.0000000000001475
    1. Karabulut M., Cramer J. T., Abe T., Sato Y., Bemben M. G. (2010). Neuromuscular Fatigue Following Low-Intensity Dynamic Exercise with Externally Applied Vascular Restriction. J. Electromyogr. Kinesiol. 20, 440–447. 10.1016/j.jelekin.2009.06.005
    1. Konrad A., Bernsteiner D., Budini F., Reiner M. M., Glashüttner C., Berger C., et al. (2020). Tissue Flossing of the Thigh Increases Isometric Strength Acutely but Has No Effects on Flexibility or Jump Height. Eur. J. Sport Sci. 21, 1648–1658. 10.1080/17461391.2020.1853818
    1. Konrad A., Močnik R., Nakamura M. (2021). Effects of Tissue Flossing on the Healthy and Impaired Musculoskeletal System: A Scoping Review. Front. Physiol. 12. 10.3389/fphys.2021.666129
    1. Loenneke J. P., Kim D., Fahs C. A., Thiebaud R. S., Abe T., Larson R. D., et al. (2015). Effects of Exercise with and without Different Degrees of Blood Flow Restriction on Torque and Muscle Activation. Muscle Nerve 51, 713–721. 10.1002/mus.24448
    1. Loenneke J. P., Pujol T. J. (2009). The Use of Occlusion Training to Produce Muscle Hypertrophy. Strength Cond. J. 31, 77–84. 10.1519/ssc.0b013e3181a5a352
    1. Loenneke J., Thiebaud R. S., Fahs C. A., Rossow L. M., Abe T., Bemben M. G. (2014). Blood Flow Restriction: Effects of Cuff Type on Fatigue and Perceptual Responses to Resistance Exercise. Acta Physiol. Hungarica 101, 158–166. 10.1556/APhysiol.101.2014.2.4
    1. Loenneke J., Wilson J., Pujol T., Bemben M. (2011). Acute and Chronic Testosterone Response to Blood Flow Restricted Exercise. Horm. Metab. Res. 43, 669–673. 10.1055/s-0031-1286309
    1. Loturco I., Pereira L. A., Kobal R., Kitamura K., Ramírez-Campillo R., Zanetti V., et al. (2016). Muscle Contraction Velocity: A Suitable Approach to Analyze the Functional Adaptations in Elite Soccer Players. J. Sport Sci. Med. 15, 483–491.
    1. Marco A. G.-L., Juan M. C.-T., Julián G.-M., Miguel G.-J. (2020). The Effects of Tissue Flossing on Perceived Knee Pain and Jump Performance: A Pilot Study. saj 8, 63–68. 10.13189/saj.2020.080203
    1. McGowan C. J., Pyne D. B., Thompson K. G., Rattray B. (2015). Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 45, 1523–1546. 10.1007/s40279-015-0376-x
    1. Mills B., Mayo B., Tavares F., Driller M. (2020). The Effect of Tissue Flossing on Ankle Range of Motion, Jump, and Sprint Performance in Elite Rugby Union Athletes. J. Sport Rehabil. 29, 282–286. 10.1123/jsr.2018-0302
    1. Moir G. L. (2008). Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Edu. Exerc. Sci. 12, 207–218. 10.1080/10913670802349766
    1. Paravlić A. H., Pisot R., Simunic B. (2020). Muscle-specific Changes of Lower Extremities in the Early Period after Total Knee Arthroplasty: Insight from Tensiomyography. J. Musculoskelet. Neuronal Interact. 20(3):390–397.
    1. Paravlić A., Zubac D., Šimunič B. (2017). Reliability of the Twitch Evoked Skeletal Muscle Electromechanical Efficiency: A Ratio between Tensiomyogram and M-Wave Amplitudes. J. Electromyogr. Kinesiol. 37, 108–116. 10.1016/j.jelekin.2017.10.002
    1. Pereira L. A., Ramirez-Campillo R., Martín-Rodríguez S., Kobal R., Abad C. C. C., Arruda A. F. S., et al. (2018). Is Tensiomyography-Derived Velocity of Contraction a Sensitive Marker to Detect Acute Performance Changes in Elite Team-Sport Athletes. Int. J. Sports Physiol. Perform. 15, 31–37. 10.1123/ijspp.2018-0959
    1. Pišot R., Narici M. V., Šimunič B., De Boer M., Seynnes O., Jurdana M., et al. (2008). Whole Muscle Contractile Parameters and Thickness Loss during 35-day Bed Rest. Eur. J. Appl. Physiol. 104, 409–414. 10.1007/s00421-008-0698-6
    1. Redd M. J., Starling-Smith T. M., Herring C. H., Stock M. S., Wells A. J., Stout J. R., et al. (2021). Tensiomyographic Responses to Warm-Up Protocols in Collegiate Male Soccer Athletes. Jfmk 6, 80. 10.3390/jfmk6040080
    1. Rixon K. P., Lamont H. S., Bemben M. G. (2007). Influence of Type of Muscle Contraction, Gender, and Lifting Experience on Postactivation Potentiation Performance. J. Strength Cond. Res. 21, 500–505. 10.1519/r-18855.1
    1. Salvador A. F., De Aguiar R. A., Lisbôa F. D., Pereira K. L., Cruz R. S. d. O., Caputo F., et al. (2016). Ischemic Preconditioning and Exercise Performance: A Systematic Review and Meta-Analysis. Br. Rev. Int. J. Sport Physiol. Perform. 11, 4–14. 10.1123/ijspp.2015-0204
    1. Seijas R., Alentorn-Geli E., Álvarez-Díaz P., Marín M., Ares O., Sallent A., et al. (2016). Gluteus Maximus Impairment in Femoroacetabular Impingement: a Tensiomyographic Evaluation of a Clinical Fact. Arch. Orthop. Trauma Surg. 136, 785–789. 10.1007/s00402-016-2428-6
    1. Seitz L. B., Haff G. G. (2016). Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 46, 231–240. 10.1007/s40279-015-0415-7
    1. Seitz L. B., Haff G. G., Wilson J. M., Duncan N. M., Marin P. J., Brown L. E., et al. (2016). Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 46, 231–240. 10.1007/s40279-015-0415-7
    1. Šimunič B. (2012). Between-day Reliability of a Method for Non-invasive Estimation of Muscle Composition. J. Electromyogr. Kinesiol. 22, 527–530. 10.1016/j.jelekin.2012.04.003
    1. Šimunič B., Degens H., Rittweger J., Narici M., Mekjavić I. B., Pišot R. (2011). Noninvasive Estimation of Myosin Heavy Chain Composition in Human Skeletal Muscle. Med. Sci. Sport Exerc. Sport Exerc. D 43, 1619–1625. 10.1249/MSS.0b013e31821522d0
    1. Staron R. S., Hagerman F. C., Hikida R. S., Murray T. F., Hostler D. P., Crill M. T., et al. (2000). Fiber Type Composition of the Vastus Lateralis Muscle of Young Men and Women. J. Histochem. Cytochem. 48, 623–629. 10.1177/002215540004800506
    1. Tillin N. A., Bishop D. (2009). Factors Modulating Post-Activation Potentiation and its Effect on Performance of Subsequent Explosive Activities. Sports Med. 39, 147–166. 10.2165/00007256-200939020-00004
    1. Tsolakis C., Bogdanis G. C., Nikolaou A., Zacharogiannis E. (2011). Influence of Type of Muscle Contraction and Gender on Postactivation Potentiation of Upper and Lower Limb Explosive Performance in Elite Fencers. J. Sports Sci. Med. 10, 577–583.
    1. Underwood F. B., Iazzetti J., Perotto A., Morrison D. (2006). Anatomical Guide for the Electromyographer: The Limbs and Trunk, Ed 4. Phys. Ther. 86, 1043. 10.1093/ptj/86.7.1043
    1. Valenčič V. (1990). "Direct Measurement of the Skeletal Muscle Tonus," in Advances in External Control of Human Extremities. Editor Popovič D.. Beograd: Nauka, 102–108.
    1. Vogrin M., Kalc M., en T. L. (2020a). Acute Effects of Tissue Flossing Around the Upper Thigh on Neuromuscular Performance: A Study Using Different Degrees of Wrapping Pressure. Authorea Prepr.30(4):601–608. 10.1123/jsr.2020-0105
    1. Vogrin M., Novak F., Licen T., Greiner N., Mikl S., Kalc M. (2021b). Acute Effects of Tissue Flossing on Ankle Range of Motion and Tensiomyography Parameters. J. Sport Rehabil. 30, 129–135. 10.1123/JSR.2019-0160
    1. Wallace B. J., Shapiro R., Wallace K. L., Abel M. G., Symons T. B. (2019). Muscular and Neural Contributions to Postactivation Potentiation. J. Strength Cond. Res. 33, 615–625. 10.1519/jsc.0000000000003011
    1. Wilson J. M., Duncan N. M., Marin P. J., Brown L. E., Loenneke J. P., Wilson S. M. C., et al. (2013). Meta-Analysis of Postactivation Potentiation and Power. J. Strength Cond. Res. 27, 854–859. 10.1519/jsc.0b013e31825c2bdb
    1. Zubac D., Paravlić A., Koren K., Felicita U., Šimunič B. (2019). Plyometric Exercise Improves Jumping Performance and Skeletal Muscle Contractile Properties in Seniors. J. Musculoskelet. Neuronal Interact 19, 38–49.

Source: PubMed

3
Se inscrever