Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study

Andrew J Vickers, David Ulmert, Daniel D Sjoberg, Caroline J Bennette, Thomas Björk, Axel Gerdtsson, Jonas Manjer, Peter M Nilsson, Anders Dahlin, Anders Bjartell, Peter T Scardino, Hans Lilja, Andrew J Vickers, David Ulmert, Daniel D Sjoberg, Caroline J Bennette, Thomas Björk, Axel Gerdtsson, Jonas Manjer, Peter M Nilsson, Anders Dahlin, Anders Bjartell, Peter T Scardino, Hans Lilja

Abstract

Objective: To determine the association between concentration of prostate specific antigen (PSA) at age 40-55 and subsequent risk of prostate cancer metastasis and mortality in an unscreened population to evaluate when to start screening for prostate cancer and whether rescreening could be risk stratified.

Design: Case-control study with 1:3 matching nested within a highly representative population based cohort study.

Setting: Malmö Preventive Project, Sweden.

Participants: 21,277 Swedish men aged 27-52 (74% of the eligible population) who provided blood at baseline in 1974-84, and 4922 men invited to provide a second sample six years later. Rates of PSA testing remained extremely low during median follow-up of 27 years.

Main outcome measures: Metastasis or death from prostate cancer ascertained by review of case notes.

Results: Risk of death from prostate cancer was associated with baseline PSA: 44% (95% confidence interval 34% to 53%) of deaths occurred in men with a PSA concentration in the highest 10th of the distribution of concentrations at age 45-49 (≥ 1.6 µg/L), with a similar proportion for the highest 10th at age 51-55 (≥ 2.4 µg/L: 44%, 32% to 56%). Although a 25-30 year risk of prostate cancer metastasis could not be ruled out by concentrations below the median at age 45-49 (0.68 µg/L) or 51-55 (0.85 µg/L), the 15 year risk remained low at 0.09% (0.03% to 0.23%) at age 45-49 and 0.28% (0.11% to 0.66%) at age 51-55, suggesting that longer intervals between screening would be appropriate in this group.

Conclusion: Measurement of PSA concentration in early midlife can identify a small group of men at increased risk of prostate cancer metastasis several decades later. Careful surveillance is warranted in these men. Given existing data on the risk of death by PSA concentration at age 60, these results suggest that three lifetime PSA tests (mid to late 40s, early 50s, and 60) are probably sufficient for at least half of men.

Conflict of interest statement

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare that HL holds patents for free PSA, intact PSA, and hK2 assays; HL, AJV, and PTS are named as co-inventors on a patent application for a statistical method to predict the result of prostate biopsy; HL has support from NIH, Swedish Cancer Society, and Arctic Partners; PS has support from OPKO Health; and AV has support from GlaxoSmithKline (GSK) and Genomic Heath for the submitted work; HL has a patent and stock relationship with Arctic Partners; PS has a consultancy, patent, stock, and royalties relationship with OPKO; AV has a consultation and honorarium relationship with GSK, Genomic Heath, and OPKO.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4793484/bin/vica005641.f1_default.jpg
Fig 1 Cumulative incidence of evidence of metastasis or death from prostate cancer by centile of PSA concentration at various ages
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4793484/bin/vica005641.f2_default.jpg
Fig 2 Lorenz curves for death from prostate cancer and 95% confidence intervals for PSA concentration at age 45-49 and 51-55

References

    1. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 2012;366:981-90.
    1. Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P, et al. Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 2010;11:725-32.
    1. Stenman UH, Hakama M, Knekt P, Aromaa A, Teppo L, Leinonen J. Serum concentrations of prostate specific antigen and its complex with alpha 1-antichymotrypsin before diagnosis of prostate cancer. Lancet 1994;344:1594-8.
    1. Gann PH, Hennekens CH, Stampfer MJ. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. JAMA 1995;273:289-94.
    1. Lilja H, Ulmert D, Bjork T, Becker C, Serio AM, Nilsson JA, et al. Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J Clin Oncol 2007;25:431-6.
    1. Ulmert D, Cronin AM, Bjork T, O’Brien MF, Scardino PT, Eastham JA, et al. Prostate-specific antigen at or before age 50 as a predictor of advanced prostate cancer diagnosed up to 25 years later: a case-control study. BMC Med 2008;6:6.
    1. Vickers AJ, Cronin AM, Bjork T, Manjer J, Nilsson PM, Dahlin A, et al. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: case-control study. BMJ 2010;341:c4521.
    1. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008;359:2220-32.
    1. Barlow L, Westergren K, Holmberg L, Talback M. The completeness of the Swedish Cancer Register: a sample survey for year 1998. Acta Oncol 2009;48:27-33.
    1. Sandblom G, Dufmats M, Olsson M, Varenhorst E. Validity of a population-based cancer register in Sweden—an assessment of data reproducibility in the South-East Region Prostate Cancer Register. Scand J Urol Nephrol 2003;37:112-9.
    1. Jonsson H, Holmstrom B, Duffy SW, Stattin P. Uptake of prostate-specific antigen testing for early prostate cancer detection in Sweden. Int J Cancer 2011;129:1881-8.
    1. Ulmert D, Becker C, Nilsson JA, Piironen T, Bjork T, Hugosson J, et al. Reproducibility and accuracy of measurements of free and total prostate-specific antigen in serum vs plasma after long-term storage at -20 degrees C. Clin Chem 2006;52:235-9.
    1. Moskowitz CS, Seshan VE, Riedel ER, Begg CB. Estimating the empirical Lorenz curve and Gini coefficient in the presence of error with nested data. Stat Med 2008;27:3191-208.
    1. Rubin DB. Multiple imputation for nonresponse in surveys. Wiley, 1987.
    1. Anderson JR, Strickland D, Corbin D, Byrnes JA, Zweiback E. Age-specific reference ranges for serum prostate-specific antigen. Urology 1995;46:54-7.
    1. Kalish LA, McKinlay JB. Serum prostate-specific antigen levels (PSA) in men without clinical evidence of prostate cancer: age-specific reference ranges for total PSA, free PSA, and percent free PSA. Urology 1999;54:1022-7.
    1. Mitra AV, Bancroft EK, Barbachano Y, Page EC, Foster CS, Jameson C, et al. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study. BJU Int 2011;107:28-39.
    1. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012;366:141-9.
    1. Van Leeuwen PJ, Roobol MJ, Kranse R, Zappa M, Carlsson S, Bul M, et al. Towards an optimal interval for prostate cancer screening. Eur Urol 2012;61:171-6.
    1. Carter HB, Pearson JD, Metter EJ, Brant LJ, Chan DW, Andres R, et al. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA 1992;267:2215-20.
    1. Whittemore AS, Lele C, Friedman GD, Stamey T, Vogelman JH, Orentreich N. Prostate-specific antigen as predictor of prostate cancer in black men and white men. J Natl Cancer Inst 1995;87:354-60.
    1. Connolly D, Black A, Gavin A, Keane PF, Murray LJ. Baseline prostate-specific antigen level and risk of prostate cancer and prostate-specific mortality: diagnosis is dependent on the intensity of investigation. Cancer Epidemiol Biomarkers Prev 2008;17:271-8.
    1. Kuller LH, Thomas A, Grandits G, Neaton JD, Multiple Risk Factor Intervention Trial Research G. Elevated prostate-specific antigen levels up to 25 years prior to death from prostate cancer. Cancer Epidemiol Biomarkers Prev 2004;13:373-7.
    1. Bul M, van Leeuwen PJ, Zhu X, Schroder FH, Roobol MJ. Prostate cancer incidence and disease-specific survival of men with initial prostate-specific antigen less than 3.0 ng/ml who are participating in ERSPC Rotterdam. Eur Urol 2011:59:505.
    1. Orsted DD, Nordestgaard BG, Jensen GB, Schnohr P, Bojesen SE. Prostate-specific antigen and long-term prediction of prostate cancer incidence and mortality in the general population. Eur Urol 2012;61:865-74.
    1. Van Leeuwen PJ, Connolly D, Tammela TL, Auvinen A, Kranse R, Roobol MJ, et al. Balancing the harms and benefits of early detection of prostate cancer. Cancer 2010;116:4857-65.
    1. Roobol MJ, Roobol DW, Schroder FH. Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). Urology 2005;65:343-6.

Source: PubMed

3
Se inscrever