Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: a pilot study

Nandu Goswami, Voyko Kavcic, Uros Marusic, Bostjan Simunic, Andreas Rössler, Helmut Hinghofer-Szalkay, Rado Pisot, Nandu Goswami, Voyko Kavcic, Uros Marusic, Bostjan Simunic, Andreas Rössler, Helmut Hinghofer-Szalkay, Rado Pisot

Abstract

We investigated the effects of bed rest (BR) immobilization, with and without computerized cognitive training with virtual spatial navigation task (CCT), on vascular endothelium on older subjects. The effects of 14-day BR immobilization in healthy older males (n=16) of ages 53-65 years on endothelial function were studied using EndoPAT(®), a noninvasive and user-independent method. From the group of 16 older men, 8 randomly received CCT during the BR, using virtual navigation tasks in a virtual environment with joystick device. In all the cases, EndoPAT assessments were done at pre- and post-BR immobilization as well as following 28 days of ambulatory recovery. The EndoPAT index increased from 1.53±0.09 (mean ± standard error of the mean) at baseline to 1.61±0.16 following immobilization (P=0.62) in the group with CCT. The EndoPAT index decreased from 2.06±0.13 (mean ± standard error of the mean) at baseline to 1.70±0.09 at the last day of BR study, day 14 (BR14) (P=0.09) in the control group. Additionally, there were no statistically significant differences between BR14 and at 28 days of follow-up (rehabilitation program) (R28). Our results show a trend of immobilization in older persons affecting the vasoconstrictory endothelial response. As the control subjects had a greater increase in EndoPAT index after R28 (+0.018) compared to subjects who had cognitive training (+0.11) (calculated from the first day of BR study), it is possible that cognitive training during BR does not improve endothelial function but rather contributes to slowing down the impairment of endothelial function. Finally, our results also show that EndoPAT may be a useful noninvasive tool to assess the vascular reactivity.

Keywords: EndoPAT®; aging; bed rest; computerized cognitive training; spatial navigation; vascular changes.

References

    1. Goswami N, Batzel JJ, Clément G, et al. Space physiology I: maximizing information from space data resources: a case for expanding integration across research disciplines. Eur J Appl Physiol. 2013;113(7):1645–1654.
    1. Marusic U, Meeusen R, Pisot R, Kavcic V. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity. Eur J Sport Sci. 2014;38:1–10.
    1. Cvirn G, Schlagenhauf A, Leschnik B, et al. Coagulation changes during presyncope and recovery. PLoS One. 2012;7(8):e42221–e42221.
    1. Bondarenko A, Panasiuk O, Stepanenko L, Goswami N, Sagach V. Reduced hyperpolarization of endothelial cells following high dietary Na+: effects of enalapril and tempol. Clin Exp Pharmacol Physiol. 2012;39:608–613.
    1. Sagach V, Bondarenko A, Bazilyuk O, Kotsuruba A. Endothelial dysfunction: possible mechanisms and ways of correction. Exp Clin Cardiol. 2006;11:107–110.
    1. Goswami N, Gorur P, Pilsl U, et al. Effect of orthostasis on endothelial function: a gender comparative study. PLoS One. 2013;8(8):e71655.
    1. Levick JR. An Introduction to Cardiovascular Physiology. 5th ed. Abingdon, OX: Hodder Education; 2012.
    1. Tardif S, Simard M. Cognitive stimulation programs in healthy elderly: a review. Int J Alzheimers Dis. 2011;2011:378934.
    1. Ball K, Berch DB, Helmers KF, et al. Advanced Cognitive Training for Independent and Vital Elderly Study Group Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288:2271–2281.
    1. Willis SL, Tennstedt SL, Marsiske M. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296:2805–2814.
    1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–376.
    1. Münzel T, Sinning C, Post F, Warnholtz A, Schulz E. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann Med. 2008;40:180–196.
    1. Guazzi M, Lenatti L, Tumminello G, Guazzi MD. Effects of orthostatic stress on forearm endothelial function in normal subjects and in patients with hypertension, diabetes, or both diseases. Am J Hypertens. 2005;18:986–994.
    1. Guazzi M, Lenatti L, Tumminello G, Puppa S, Fiorentini C, Guazzi MD. The behaviour of the flow-mediated brachial artery vasodilatation during orthostatic stress in normal man. Acta Physiol Scand. 2004;182:353–360.
    1. Kuipers NT, Sauder CL, Carter JR, Ray CA. Neurovascular responses to mental stress in the supine and upright postures. J Appl Physiol. 2008;104:1129–1136.
    1. Thijssen DH, Black MA, Pyke KE, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300:H2–H12.
    1. Hamburg NM, Benjamin EJ. Assessment of endothelial function using digital pulse amplitude tonometry. Trends Cardiovasc Med. 2009;19:6–11.
    1. Kuvin JT, Patel AR, Sliney KA, et al. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J. 2003;146:168–174.
    1. Faizi AK, Kornmo DW, Agewall S. Evaluation of endothelial function using finger plethysmography. Clin Physiol Funct Imaging. 2009;29:372–375.
    1. Montani JP, Van Vliet BN. Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure. Exp Physiol. 2009;94:382–388.
    1. Goswami N, Roessler A, Hinghofer-Szalkay H, Montani JP, Steptoe A. Delaying orthostatic syncope with mental challenge: a pilot study. Physiol Behav. 2012;106:569–573.
    1. Stephenson RB. Modification of reflex regulation of blood pressure by behavior. Ann Rev Physiol. 1984;46:133–142.
    1. Iseki K, Hanakawa T, Shinozaki J, Nankaku M, Fukuyama H. Neural mechanisms involved in mental imagery and observation of gait. Neuroimage. 2008;41(3):1021–1031.
    1. Wagner J, Stephan T, Kalla R, et al. Mind the bend: cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res. 2008;191(2):247–255.
    1. Kranczioch C, Mathews C, Dean P, Sterr A. Task complexity differentially affects executed and imagined movement preparation: evidence from movement-related potentials. PLoS One. 2010;5(2):e9284.
    1. Yinlai J, Wang S, Tan R, et al. Comparison of cortical activation during real walking and mental imagery of walking – The possibility of quickening walking rehabilitation by mental imaginary of walking. In: Theophanides T, editor. Infrared Spectroscopy – Life and Biomedical Sciences. Rijeka: InTech; 2012. p. 378.

Source: PubMed

3
Se inscrever