Electronic Laboratory Medicine ordering with evidence-based Order sets in primary care (ELMO study): protocol for a cluster randomised trial

Nicolas Delvaux, An De Sutter, Stijn Van de Velde, Dirk Ramaekers, Steffen Fieuws, Bert Aertgeerts, Nicolas Delvaux, An De Sutter, Stijn Van de Velde, Dirk Ramaekers, Steffen Fieuws, Bert Aertgeerts

Abstract

Background: Laboratory testing is an important clinical act with a valuable role in screening, diagnosis, management and monitoring of diseases or therapies. However, inappropriate laboratory test ordering is frequent, burdening health care spending and negatively influencing quality of care. Inappropriate tests may also result in false-positive results and potentially cause excessive downstream activities. Clinical decision support systems (CDSSs) have shown promising results to influence the test-ordering behaviour of physicians and to improve appropriateness. Order sets, a form of CDSS where a limited set of evidence-based tests are proposed for a series of indications, integrated in a computerised physician order entry (CPOE) have been shown to be effective in reducing the volume of ordered laboratory tests but convincing evidence that they influence appropriateness is lacking. The aim of this study is to evaluate the effect of order sets on the quality and quantity of laboratory test orders by physicians. We also aim to evaluate the effect of order sets on diagnostic error and explore the effect on downstream or cascade activities.

Methods: We will conduct a cluster randomised controlled trial in Belgian primary care practices. The study is powered to measure two outcomes. We will primarily measure the influence of our CDSS on the appropriateness of laboratory test ordering. Additionally, we will also measure the influence on diagnostic error. We will also explore the effects of our intervention on cascade activities due to altered results of inappropriate tests.

Discussion: We have designed a study that should be able to demonstrate whether the CDSS aimed at diagnostic testing is not only able to influence appropriateness but also safe with respect to diagnostic error. These findings will influence a lager, nationwide implementation of this CDSS.

Trial registration: ClinicalTrials.gov, NCT02950142 .

Conflict of interest statement

Ethics approval and consent to participate

Before the start of the study, we will propose a research agreement to the physicians that stipulates the trial objectives and the formalities on data collection. Study physicians will seek informed consent from all patients for whom laboratory tests are ordered for one or more of the 17 study indications. Only data from patients who consent to the terms of the informed consent form will be included in the study.

Ethics committee approval for this study was obtained from the University Hospital Leuven Medical Ethics Committee on 26 July 2017. Additional authorisation for the use of medical and personal data was requested from the Commission for the Protection of Privacy Sector Committee Health.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow of the study including data collection points, assessments and reports. EHR: electronic health record

References

    1. Cadogan SL, Browne JP, Bradley CP, Cahill MR. The effectiveness of interventions to improve laboratory requesting patterns among primary care physicians: a systematic review. Implement Sci. 2015;10:167. doi: 10.1186/s13012-015-0356-4.
    1. Hickner J, Thompson PJ, Wilkinson T, Epner P, Shaheen M, Pollock AM, et al. Primary care physicians’ challenges in ordering clinical laboratory tests and interpreting results. J Am Board Fam Med. 2014;27:268–274. doi: 10.3122/jabfm.2014.02.130104.
    1. Statistieken terugbetaalde bedrage en akten van artsen en tandartsen. RIZIV. . Accessed 18 Oct 2017.
    1. Driskell OJ, Holland D, Hanna FW, Jones PW, Pemberton RJ, Tran M, et al. Inappropriate requesting of glycated hemoglobin (Hb A1c) is widespread: assessment of prevalence, impact of national guidance, and practice-to-practice variability. Clin Chem. 2012;58:906–915. doi: 10.1373/clinchem.2011.176487.
    1. Davis P, Gribben B, Lay-Yee R, Scott A. How much variation in clinical activity is there between general practitioners? A multi-level analysis of decision-making in primary care. J Health Serv Res Policy. 2002;7:202–208. doi: 10.1258/135581902320432723.
    1. Leurquin P, Van Casteren V, De Maeseneer J. Use of blood tests in general practice: a collaborative study in eight European countries. Eurosentinel Study Group. Br J Gen Pract. 1995;45:21–25.
    1. O’Kane MJ, Casey L, Lynch PLM, McGowan N, Corey J. Clinical outcome indicators, disease prevalence and test request variability in primary care. Ann Clin Biochem. 2011;48(Pt 2):155–158. doi: 10.1258/acb.2010.010214.
    1. Zhi M, Ding EL, Theisen-Toupal J, Whelan J, Arnaout R. The landscape of inappropriate laboratory testing: a 15-year meta-analysis. PLoS One. 2013;8:e78962. doi: 10.1371/journal.pone.0078962.
    1. De Sutter A, Van den Bruel A, Devriese S, Mambourg F, Van Gaever V, Verstraete A, et al. Laboratorium testen in de huisartsgeneeskunde. KCE reports. Federaal Kenniscentrum voor de Gezondheidszorg (KCE) 2007.
    1. Rang M. The Ulysses syndrome. Can Med Assoc J. 1972;106:122–123.
    1. Houben PHH, van der Weijden T, Winkens RAG, Grol RPTM. Cascade effects of laboratory testing are found to be rare in low disease probability situations: prospective cohort study. J Clin Epidemiol. 2010;63:452–458. doi: 10.1016/j.jclinepi.2009.08.004.
    1. Kobewka DM, Ronksley PE, McKay JA, Forster AJ, van WC. Influence of educational, audit and feedback, system based, and incentive and penalty interventions to reduce laboratory test utilization: a systematic review. Clin Chem Lab Med CCLM. 2014;53:157–183.
    1. Delvaux N, Van Thienen K, Heselmans A, de Velde SV, Ramaekers D, Aertgeerts B. The effects of computerized clinical decision support systems on laboratory test ordering: a systematic review. Arch Pathol Lab Med. 2017;141:585–595. doi: 10.5858/arpa.2016-0115-RA.
    1. van Wijk MAM, van der Lei J, Mosseveld M, Bohnen AM, van Bemmel JH. Assessment of decision support for blood test ordering in primary care. A Randomized Trial Ann Intern Med. 2001;134:274–281. doi: 10.7326/0003-4819-134-4-200102200-00010.
    1. Chan AJ, Chan J, Cafazzo JA, Rossos PG, Tripp T, Shojania K, et al. Order sets in health care: a systematic review of their effects. Int J Technol Assess Health Care. 2012;28:235–240. doi: 10.1017/S0266462312000281.
    1. Westbrook JI, Georgiou A, Dimos A, Germanos T. Computerised pathology test order entry reduces laboratory turnaround times and influences tests ordered by hospital clinicians: a controlled before and after study. J Clin Pathol. 2006;59:533–536. doi: 10.1136/jcp.2005.029983.
    1. Thompson W, Dodek PM, Norena M, Dodek J. Computerized physician order entry of diagnostic tests in an intensive care unit is associated with improved timeliness of service. Crit Care Med. 2004;32:1306–1309. doi: 10.1097/01.CCM.0000127783.47103.8D.
    1. Van de Velde S, Vander Stichele R, Fauquert B, Geens S, Heselmans A, Ramaekers D, et al. EBMPracticeNet: a bilingual national electronic point-of-care project for retrieval of evidence-based clinical guideline information and decision support. JMIR Res Protoc. 2013;2 10.2196/resprot.2644.
    1. Avonts M, Cloetens H, Leyns C, Delvaux N, Dekker N, Demulder A, et al. Aanbeveling voor goede medisch praktijkvoering: Aanvraag van laboratoriumtests door huisartsen. Huisarts Nu. 2011;40:S1–55.
    1. Leysen P, Avonts M, Cloetens H, Delvaux N, Koeck P, Saegeman V, et al. Richtlijn voor goed medische praktijkvoering: Aanvraag van laboratoriumtests door huisartsen - deel 2. Antwerpen: Domus Medica vzw; 2012.
    1. Delvaux N, Van de Velde S, Aertgeerts B, Goossens M, Fauquert B, Kunnamo I, et al. Adapting a large database of point of care summarized guidelines: a process description. J Eval Clin Pract. 2017;23:21–28. doi: 10.1111/jep.12426.
    1. Van de Velde S, Roshanov P, Kortteisto T, Kunnamo I, Aertgeerts B, Vandvik PO, et al. Tailoring implementation strategies for evidence-based recommendations using computerised clinical decision support systems: protocol for the development of the GUIDES tools. Implement Sci IS. 2016;11:29. doi: 10.1186/s13012-016-0393-7.
    1. Kostopoulou O, Delaney BC, Munro CW. Diagnostic difficulty and error in primary care—a systematic review. Fam Pract. 2008;25:400–413. doi: 10.1093/fampra/cmn071.
    1. Graber ML, Franklin N, Gordon R. Diagnostic error in internal medicine. Arch Intern Med. 2005;165:1493–1499. doi: 10.1001/archinte.165.13.1493.
    1. Schiff GD, Hasan O, Kim S, Abrams R, Cosby K, Lambert BL, et al. Diagnostic error in medicine: analysis of 583 physician-reported errors. Arch Intern Med. 2009;169:1881–1887. doi: 10.1001/archinternmed.2009.333.
    1. Singh H, Giardina TD, Meyer AND, Forjuoh SN, Reis MD, Thomas EJ. Types and origins of diagnostic errors in primary care settings. JAMA Intern Med. 2013;173:418–425. doi: 10.1001/jamainternmed.2013.2777.
    1. Panesar SS, de Silva D, Carson-Stevens A, Cresswell KM, Salvilla SA, Slight SP, et al. How safe is primary care? A systematic review. BMJ Qual Saf. 2016;25:544–553. doi: 10.1136/bmjqs-2015-004178.
    1. Zwaan L, Schiff GD, Singh H. Advancing the research agenda for diagnostic error reduction. BMJ Qual Saf. 2013;22(Suppl 2):ii52–ii57. doi: 10.1136/bmjqs-2012-001624.
    1. Heselmans A, de Velde SV, Ramaekers D, Stichele RV, Aertgeerts B. Feasibility and impact of an evidence-based electronic decision support system for diabetes care in family medicine: protocol for a cluster randomized controlled trial. Implement Sci. 2013;8:83. doi: 10.1186/1748-5908-8-83.
    1. Teerenstra S, Moerbeek M, van Achterberg T, Pelzer BJ, Borm GF. Sample size calculations for 3-level cluster randomized trials. Clin Trials Lond Engl. 2008;5:486–495. doi: 10.1177/1740774508096476.
    1. Campbell M, Steen N, Grimshaw J, Eccles M, Mollison J, Lombard C. Changing professional practice. Copenhagen: DSI: Danish Institute for Health Services Research and Development; 1999. Design and statistical issues in implementation research; pp. 57–76.
    1. Campbell M, Grimshaw J, Steen N. Sample size calculations for cluster randomised trials. Changing Professional Practice in Europe Group (EU BIOMED II Concerted Action) J Health Serv Res Policy. 2000;5:12–16. doi: 10.1177/135581960000500105.
    1. Littenberg B, MacLean CD. Intra-cluster correlation coefficients in adults with diabetes in primary care practices: the Vermont Diabetes Information System field survey. BMC Med Res Methodol. 2006;6:20. doi: 10.1186/1471-2288-6-20.
    1. Adams G, Gulliford MC, Ukoumunne OC, Eldridge S, Chinn S, Campbell MJ. Patterns of intra-cluster correlation from primary care research to inform study design and analysis. J Clin Epidemiol. 2004;57:785–794. doi: 10.1016/j.jclinepi.2003.12.013.
    1. Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med. 2012;157:29–43. doi: 10.7326/0003-4819-157-1-201207030-00450.
    1. Roshanov PS, You JJ, Dhaliwal J, Koff D, Mackay JA, Weise-Kelly L, et al. Can computerized clinical decision support systems improve practitioners’ diagnostic test ordering behavior? A decision-maker-researcher partnership systematic review. Implement Sci IS. 2011;6:88. doi: 10.1186/1748-5908-6-88.
    1. Roshanov PS, Fernandes N, Wilczynski JM, Hemens BJ, You JJ, Handler SM, et al. Features of effective computerised clinical decision support systems: meta-regression of 162 randomised trials. BMJ. 2013;346:f657. doi: 10.1136/bmj.f657.
    1. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330:765. doi: 10.1136/bmj.38398.500764.8F.
    1. Kohn L, Corrigan J, Donaldson M. To err is human: building a safer health system. Washington DC: National Academy Press; 2000.

Source: PubMed

3
Se inscrever