Intravenous immunoglobulin for hypogammaglobulinemia after lung transplantation: a randomized crossover trial

David J Lederer, Nisha Philip, Debbie Rybak, Selim M Arcasoy, Steven M Kawut, David J Lederer, Nisha Philip, Debbie Rybak, Selim M Arcasoy, Steven M Kawut

Abstract

Background: We aimed to determine the effects of treatment with intravenous immunoglobulin on bacterial infections in patients with hypogammaglobulinemia (HGG) after lung transplantation.

Methods: We performed a randomized, double-blind, placebo-controlled two-period crossover trial of immune globulin intravenous (IVIG), 10% Purified (Gamunex, Bayer, Elkhart, IN) monthly in eleven adults who had undergone lung transplantation more than three months previously. We randomized study participants to three doses of IVIG (or 0.1% albumin solution (placebo)) given four weeks apart followed by a twelve week washout and then three doses of placebo (or IVIG). The primary outcome was the number of bacterial infections within each treatment period.

Results: IVIG had no effect on the number of bacterial infections during the treatment period (3 during IVIG and 1 during placebo; odds ratio 3.5, 95% confidence interval 0.4 to 27.6, p = 0.24). There were no effects on other infections, use of antibiotics, or lung function. IVIG significantly increased trough IgG levels at all time points (least square means, 765.3 mg/dl during IVIG and 486.3 mg/dl during placebo, p<0.001). Four serious adverse events (resulting in hospitalization) occurred during the treatment periods (3 during active treatment and 1 during the placebo period, p = 0.37). Chills, flushing, and nausea occurred during one infusion of IVIG.

Conclusions: Treatment with IVIG did not reduce the short-term risk of bacterial infection in patients with HGG after lung transplantation. The clinical efficacy of immunoglobulin supplementation in HGG related to lung transplantation over the long term or with recurrent infections is unknown.

Trial registration: Clinicaltrials.gov NCT00115778.

Conflict of interest statement

Competing Interests: This study was funded by Bayer Healthcare (now Talecris Pharmaceuticals). This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Study flow.
Figure 1. Study flow.
Figure 2. Box (interquartile range) and whisker…
Figure 2. Box (interquartile range) and whisker plots of serum IgG levels during the IVIG period (red) and placebo period (white).

References

    1. Kotloff RM, Thabut G (2011) Lung transplantation. Am J Respir Crit Care Med 184: 159–171.
    1. Aguilar-Guisado M, Givalda J, Ussetti P, Ramos A, Morales P, et al. (2007) Pneumonia after lung transplantation in the RESITRA Cohort: a multicenter prospective study. Am J Transplant 7: 1989–1996.
    1. de Bruyn G, Whelan TP, Mulligan MS, Raghu G, Limaye AP (2004) Invasive pneumococcal infections in adult lung transplant recipients. Am J Transplant 4: 1366–1371.
    1. Husain S, Chan KM, Palmer SM, Hadjiliadis D, Humar A, et al. (2006) Bacteremia in lung transplant recipients in the current era. Am J Transplant 6: 3000–3007.
    1. Remund KF, Best M, Egan JJ (2009) Infections relevant to lung transplantation. Proc Am Thorac Soc 6: 94–100.
    1. Chambers DC, Davies B, Mathews A, Yerkovich ST, Hopkins PM (2013) Bronchiolitis obliterans syndrome, hypogammaglobulinemia, and infectious complications of lung transplantation. J Heart Lung Transplant 32: 36–43.
    1. Yip NH, Lederer DJ, Kawut SM, Wilt JS, D’Ovidio F, et al. (2006) Immunoglobulin G levels before and after lung transplantation. Am J Respir Crit Care Med 173: 917–921.
    1. Kawut SM, Shah L, Wilt JS, Dwyer E, Maani PA, et al. (2005) Risk factors and outcomes of hypogammaglobulinemia after lung transplantation. Transplantation 79: 1723–1726.
    1. Goldfarb NS, Avery RK, Goormastic M, Mehta AC, Schilz R, et al. (2001) Hypogammaglobulinemia in lung transplant recipients. Transplantation 71: 242–246.
    1. Florescu DF, Kalil AC, Qiu F, Schmidt CM, Sandkovsky U (2013) What is the impact of hypogammaglobulinemia on the rate of infections and survival in solid organ transplantation? A meta-analysis. Am J Transplant 13: 2601–2610.
    1. Yamani MH, Avery RK, Mawhorter SD, Young JB, Ratliff NB, et al. (2001) Hypogammaglobulinemia following cardiac transplantation: a link between rejection and infection. J Heart Lung Transplant 20: 425–430.
    1. Doron S, Ruthazer R, Werner BG, Rabson A, Snydman DR (2006) Hypogammaglobulinemia in liver transplant recipients: incidence, timing, risk factors, and outcomes. Transplantation 81: 697–703.
    1. Fernandez-Ruiz M, Lopez-Medrano F, Varela-Pena P, Lora-Pablos D, Garcia-Reyne A, et al. (2012) Monitoring of immunoglobulin levels identifies kidney transplant recipients at high risk of infection. Am J Transplant 12: 2763–2773.
    1. Orange JS, Hossny EM, Weiler CR, Ballow M, Berger M, et al. (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol 117: S525–553.
    1. Food and Drug Administration. Guidance for Industry: Evaluating Clinical Studies of Antimicrobials in the Division of Anti-Infective Drug Products (draft 02/1997). Center for Drug Evaluation and Research (CDER). Rockville, MD. Available at the FDA website: Available: . Accessed 2013 Sep 3.
    1. Robertson J, Elidemir O, Saz EU, Gulen F, Schecter M, et al. (2009) Hypogammaglobulinemia: Incidence, risk factors, and outcomes following pediatric lung transplantation. Pediatric transplantation 13: 754–759.
    1. Anonymous (1990) NIH consensus conference. Intravenous immunoglobulin. Prevention and treatment of disease. JAMA 264: 3189–3193.
    1. Yamani MH, Avery R, Mawhorter SD, McNeill A, Cook D, et al. (2005) The impact of CytoGam on cardiac transplant recipients with moderate hypogammaglobulinemia: a randomized single-center study. J Heart Lung Transplant 24: 1766–1769.

Source: PubMed

3
Se inscrever