Magnetic resonance spectroscopic imaging and volumetric measurements of the brain in patients with postcancer fatigue: a randomized controlled trial

Hetty Prinsen, Arend Heerschap, Gijs Bleijenberg, Machiel J Zwarts, Jan Willem H Leer, Jack J van Asten, Marinette van der Graaf, Mark Rijpkema, Hanneke W M van Laarhoven, Hetty Prinsen, Arend Heerschap, Gijs Bleijenberg, Machiel J Zwarts, Jan Willem H Leer, Jack J van Asten, Marinette van der Graaf, Mark Rijpkema, Hanneke W M van Laarhoven

Abstract

Background: Postcancer fatigue is a frequently occurring problem, impairing quality of life. Until now, little is known about (neuro) physiological factors determining postcancer fatigue. For non-cancer patients with chronic fatigue syndrome, certain characteristics of brain morphology and metabolism have been identified in previous studies. We investigated whether these volumetric and metabolic traits are a reflection of fatigue in general and thus also of importance for postcancer fatigue.

Methods: Fatigued patients were randomly assigned to either the intervention condition (cognitive behavior therapy) or the waiting list condition. Twenty-five patients in the intervention condition and fourteen patients in the waiting list condition were assessed twice, at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 matched non-fatigued controls. All participants had completed treatment of a malignant, solid tumor minimal one year earlier. Global brain volumes, subcortical brain volumes, metabolite tissue concentrations, and metabolite ratios were primary outcome measures.

Results: Volumetric and metabolic parameters were not significantly different between fatigued and non-fatigued patients. Change scores of volumetric and metabolic parameters from baseline to follow-up were not significantly different between patients in the therapy and the waiting list group. Patients in the therapy group reported a significant larger decrease in fatigue scores than patients in the waiting list group.

Conclusions: No relation was found between postcancer fatigue and the studied volumetric and metabolic markers. This may suggest that, although postcancer fatigue and chronic fatigue syndrome show strong resemblances as a clinical syndrome, the underlying physiology is different.

Trial registration: ClinicalTrials.gov NCT01096641.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow chart of the study.
Figure 1. Flow chart of the study.
Figure 2. Examples of subcortical and global…
Figure 2. Examples of subcortical and global brain segmentation.
An example of subcortical brain segmentation of the thalamus in red in coronal (A), sagittal (B), and transversal plane (C), and an example of voxel-based segmentation of an anatomical image (D) in a gray matter image (E) and a white matter image (F).
Figure 3. Examples of spectra, background images,…
Figure 3. Examples of spectra, background images, and 1H Magnetic Resonance Spectroscopic Imaging grid.
An example of a Hanning filtered spectrum in the occipital cortex (A) and in the hippocampus (B) and the accompanying background image plus 1H Magnetic Resonance Spectroscopic Imaging grid (respectively C and D).

References

    1. Irvine D, Vincent L, Graydon JE, Bubela N, Thompson L (1994) The prevalence and correlates of fatigue in patients receiving treatment with chemotherapy and radiotherapy. A comparison with the fatigue experienced by healthy individuals. Cancer Nurs 17: 367-378. PubMed: .
    1. Smets EM, Garssen B, Schuster-Uitterhoeve AL, de Haes JC (1993) Fatigue in cancer patients. Br J Cancer 68: 220-224. doi:. PubMed: .
    1. Bower JE, Ganz PA, Desmond KA, Bernaards C, Rowland JH et al. (2006) Fatigue in long-term breast carcinoma survivors: a longitudinal investigation. Cancer 106: 751-758. doi:. PubMed: .
    1. Hjermstad MJ, Fosså SD, Oldervoll L, Holte H, Jacobsen AB et al. (2005) Fatigue in long-term Hodgkin’s Disease survivors: a follow-up study. J Clin Oncol 23: 6587-6595. doi:. PubMed: .
    1. Nieboer P, Buijs C, Rodenhuis S, Seynaeve C, Beex LV et al. (2005) Fatigue and relating factors in high-risk breast cancer patients treated with adjuvant standard or high-dose chemotherapy: a longitudinal study. J Clin Oncol 23: 8296-8304. doi:. PubMed: .
    1. Servaes P, Gielissen MF, Verhagen S, Bleijenberg G (2007) The course of severe fatigue in disease-free breast cancer patients: a longitudinal study. Psychooncology 16: 787-795. doi:. PubMed: .
    1. Servaes P, Verhagen S, Schreuder HW, Veth RP, Bleijenberg G (2003) Fatigue after treatment for malignant and benign bone and soft tissue tumors. J Pain Symptom Manage 26: 1113-1122. doi:. PubMed: .
    1. Bower JE, Ganz PA, Desmond KA, Rowland JH, Meyerowitz BE et al. (2000) Fatigue in breast cancer survivors: occurrence, correlates, and impact on quality of life. J Clin Oncol 18: 743-753. PubMed: .
    1. Servaes P, Verhagen C, Bleijenberg G (2002) Fatigue in cancer patients during and after treatment: prevalence, correlates and interventions. Eur J Cancer 38: 27-43. doi:. PubMed: .
    1. Gielissen MF, Verhagen S, Witjes F, Bleijenberg G (2006) Effects of cognitive behavior therapy in severely fatigued disease-free cancer patients compared with patients waiting for cognitive behavior therapy: a randomized controlled trial. J Clin Oncol 24: 4882-4887. doi:. PubMed: .
    1. de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW et al. (2005) Gray matter volume reduction in the chronic fatigue syndrome. NeuroImage 26: 777-781. doi:. PubMed: .
    1. Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N (2004) Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol 4: 14. doi:. PubMed: .
    1. de Lange FP, Koers A, Kalkman JS, Bleijenberg G, Hagoort P et al. (2008) Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain 131: 2172-2180. doi:. PubMed: .
    1. Brooks JC, Roberts N, Whitehouse G, Majeed T (2000) Proton magnetic resonance spectroscopy and morphometry of the hippocampus in chronic fatigue syndrome. Br J Radiol 73: 1206-1208. PubMed: .
    1. Narayana PA (2005) Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J Neuroimaging 15: 46S-57S. doi:. PubMed: .
    1. Tiersky LA, Johnson SK, Lange G, Natelson BH, DeLuca J (1997) Neuropsychology of chronic fatigue syndrome: a critical review. J Clin Exp Neuropsychol 19: 560-586. doi:. PubMed: .
    1. Puri BK, Counsell SJ, Zaman R, Main J, Collins AG et al. (2002) Relative increase in choline in the occipital cortex in chronic fatigue syndrome. Acta Psychiatr Scand 106: 224-226. doi:. PubMed: .
    1. Zaman R, Puri BK, Main J, Nowicky AV, Davey NJ (2001) Corticospinal inhibition appears normal in patients with chronic fatigue syndrome. Exp Physiol 86: 547-550. doi:. PubMed: .
    1. Rueckert L, Grafman J (1998) Sustained attention deficits in patients with lesions of posterior cortex. Neuropsychologia 36: 653-660. doi:. PubMed: .
    1. Harris RE, Clauw DJ (2012) Imaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy. Neurosci Lett 520: 192-196. doi:. PubMed: .
    1. Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N et al. (1998) In vivo MR spectroscopy of human dementia. Neuroimaging Clin N Am 8: 809-822. PubMed: .
    1. Dittner AJ, Wessely SC, Brown RG (2004) The assessment of fatigue: a practical guide for clinicians and researchers. J Psychosom Res 56: 157-170. doi:. PubMed: .
    1. Vercoulen JH, Swanink CM, Fennis JF, Galama JM, van der Meer JW et al. (1994) Dimensional assessment of chronic fatigue syndrome. J Psychosom Res 38: 383-392. doi:. PubMed: .
    1. Gielissen MF, Verhagen CA, Bleijenberg G (2007) Cognitive behaviour therapy for fatigued cancer survivors: long-term follow-up. Br J Cancer 97: 612-618. doi:. PubMed: .
    1. Servaes P, Verhagen S, Bleijenberg G (2002) Determinants of chronic fatigue in disease-free breast cancer patients: a cross-sectional study. Ann Oncol 13: 589-598. doi:. PubMed: .
    1. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. NeuroImage 11: 805-821. doi:. PubMed: .
    1. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ et al. (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 21-36. doi:. PubMed: .
    1. Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP (2005) Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 24: 1548-1565. doi:. PubMed: .
    1. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56: 907-922. doi:. PubMed: .
    1. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 Suppl 1: S208-S219. doi:. PubMed: .
    1. Scheenen TW, Klomp DW, Wijnen JP, Heerschap A (2008) Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med 59: 1-6. doi:. PubMed: .
    1. Wijnen JP, van Asten JJ, Klomp DW, Sjobakk TE, Gribbestad IS et al. (2010) Short echo time 1H MRSI of the human brain at 3T with adiabatic slice-selective refocusing pulses; reproducibility and variance in a dual center setting. J Magn Reson Imaging 31: 61-70. doi:. PubMed: .
    1. Gur RC, Mozley PD, Resnick SM, Gottlieb GL, Kohn M et al. (1991) Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proc Natl Acad Sci U S A 88: 2845-2849. doi:. PubMed: .
    1. Prinsen H, Bleijenberg G, Zwarts MJ, Hopman MT, Heerschap A et al. (2012) Physiological and neurophysiological determinants of postcancer fatigue: design of a randomized controlled trial. BMC Cancer 12: 256. doi:. PubMed: .
    1. Rijpkema M, Everaerd D, van der Pol C, Franke B, Tendolkar I et al. (2012) Normal sexual dimorphism in the human basal ganglia. Hum Brain Mapp 33: 1246-1252. doi:. PubMed: .
    1. Bracken BK, Jensen JE, Prescot AP, Cohen BM, Renshaw PF et al. (2011) Brain metabolite concentrations across cortical regions in healthy adults. Brain Res 1369: 89-94. doi:. PubMed: .
    1. Pan JW, Venkatraman T, Vives K, Spencer DD (2006) Quantitative glutamate spectroscopic imaging of the human hippocampus. NMR Biomed 19: 209-216. doi:. PubMed: .
    1. Watanabe T, Shiino A, Akiguchi I (2012) Hippocampal metabolites and memory performances in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Neurobiol Learn Mem 97: 289-293. doi:. PubMed: .
    1. Chaudhuri A, Condon BR, Gow JW, Brennan D, Hadley DM (2003) Proton magnetic resonance spectroscopy of basal ganglia in chronic fatigue syndrome. Neuroreport 14: 225-228. doi:. PubMed: .
    1. Reuter-Lorenz PA, Cimprich B (2012) Cognitive function and breast cancer: promise and potential insights from functional brain imaging. Treat: Breast Cancer Res.

Source: PubMed

3
Se inscrever