Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial

Lennart Tonneijck, Mark M Smits, Marcel H A Muskiet, Trynke Hoekstra, Mark H H Kramer, A H Jan Danser, Michaela Diamant, Jaap A Joles, Daniël H van Raalte, Lennart Tonneijck, Mark M Smits, Marcel H A Muskiet, Trynke Hoekstra, Mark H H Kramer, A H Jan Danser, Michaela Diamant, Jaap A Joles, Daniël H van Raalte

Abstract

Aims/hypothesis: This study aimed to investigate the acute renal effects of the glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide in type 2 diabetes patients.

Methods: We included overweight (BMI 25-40 kg/m(2)) men and postmenopausal women, aged 35-75 years with type 2 diabetes (HbA1c 48-75 mmol/mol; 6.5-9.0%) and estimated GFR ≥ 60 ml min(-1) 1.73 m(-2). Exenatide or placebo (NaCl solution, 154 mmol/l) was administrated intravenously in an acute, randomised, double-blind, placebo-controlled trial conducted at the Diabetes Center VU University Medical Center (VUMC). GFR (primary endpoint) and effective renal plasma flow (ERPF) were determined by inulin and para-aminohippurate clearance, respectively, based on timed urine sampling. Filtration fraction (FF) and effective renal vascular resistance (ERVR) were calculated, and glomerular hydrostatic pressure (PGLO) and vascular resistance of the afferent (RA) and efferent (RE) renal arteriole were estimated. Tubular function was assessed by absolute and fractional excretion of sodium (FENa), potassium (FEK) and urea (FEU), in addition to urine osmolality, pH and free water clearance. Renal damage markers, BP and plasma glucose were also determined.

Results: Of the 57 patients randomised by computer, 52 were included in the final analyses. Exenatide (n = 24) did not affect GFR (mean difference +2 ± 3 ml min(-1) 1.73 m(-2), p = 0.489), ERPF, FF, ERVR or PGLO, compared with placebo (n = 28). Exenatide increased RA (p < 0.05), but did not change RE. Exenatide increased FENa, FEK, urine osmolality and pH, while FEU, urinary flow and free water clearance were decreased (all p < 0.05). Osmolar clearance and renal damage makers were not affected. Diastolic BP and mean arterial pressure increased by 3 ± 1 and 6 ± 2 mmHg, respectively, whereas plasma glucose decreased by 1.4 ± 0.1 mmol/l (all p < 0.05).

Conclusions/interpretation: Exenatide infusion does not acutely affect renal haemodynamics in overweight type 2 diabetes patients at normal filtration levels. Furthermore, acute GLP-1RA administration increases proximal sodium excretion in these patients.

Trial registration: ClincialTrials.gov NCT01744236 FUNDING : The research leading to these results has been funded from: (1) the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 282521 - the SAFEGUARD project; and (2) the Dutch Kidney Foundation, under grant agreement IP12.87.

Keywords: Diabetes; Exenatide; GLP-1 receptor agonist; Glomerular filtration rate; Glomerular hyperfiltration; Glucagon-like peptide-1; Renal function; Renal haemodynamics; Type 2 diabetes.

Figures

Fig. 1
Fig. 1
Outline of experimental procedures
Fig. 2
Fig. 2
Flow diagram of study participants

References

    1. Muskiet MH, Tonneijck L, Smits MM, et al. Pleiotropic effects of type 2 diabetes management strategies on renal risk factors. Lancet Diabetes Endocrinol. 2015;3:367–381. doi: 10.1016/S2213-8587(15)00030-3.
    1. Smits MM, Tonneijck L, Muskiet MH, et al. Gastrointestinal actions of GLP-1 based therapies: glycaemic control beyond the pancreas. Diabetes Obes Metab. 2016;18:224–235. doi: 10.1111/dom.12593.
    1. Muskiet MH, Smits MM, Morsink LM, Diamant M. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol. 2014;10:88–103. doi: 10.1038/nrneph.2013.272.
    1. Pendergrass M, Fenton C, Haffner SM, Chen W. Exenatide and sitagliptin are not associated with increased risk of acute renal failure: A retrospective claims analysis. Diabetes Obes Metab. 2012;14:596–600. doi: 10.1111/j.1463-1326.2012.01567.x.
    1. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373:2247–2257. doi: 10.1056/NEJMoa1509225.
    1. Gutzwiller J-P, Tschopp S, Bock A, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab. 2004;89:3055–3061. doi: 10.1210/jc.2003-031403.
    1. Thomson SC, Kashkouli A, Singh P. Glucagon-like peptide-1 receptor stimulation increases GFR and suppresses proximal reabsorption in the rat. Am J Physiol Renal Physiol. 2013;304:F137–F144. doi: 10.1152/ajprenal.00064.2012.
    1. Skov J, Dejgaard A, Frøkiær J, et al. Glucagon-like peptide-1 (GLP-1): Effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab. 2013;98:664–671. doi: 10.1210/jc.2012-3855.
    1. Asmar A, Simonsen L, Asmar M, et al. Renal Extraction and Acute Effects of Glucagon-like peptide-1 on Central and Renal Hemodynamics in Healthy Men. Am J Physiol Endocrinol. 2015;15(308):E641–E649. doi: 10.1152/ajpendo.00429.2014.
    1. Muskiet MH, Tonneijck L, Smits MM, Kramer MH, Diamant M, Joles JA, et al. Acute renal haemodynamic effects of GLP-1 receptor agonist exenatide in healthy overweight males. Diabetes Obes Metab. 2016;18:178–185. doi: 10.1111/dom.12601.
    1. Smits MM, Tonneijck L, Muskiet MH, et al. Cardiovascular, renal and gastrointestinal effects of incretin-based therapies: an acute and 12-week randomised, double-blind, placebo-controlled, mechanistic intervention trial in type 2 diabetes. BMJ Open. 2015;19(5):e009579. doi: 10.1136/bmjopen-2015-009579.
    1. Fehse F, Trautmann M, Holst JJ, et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2005;90:5991–5997. doi: 10.1210/jc.2005-1093.
    1. van Bloemendaal L, IJzerman RG, Ten Kulve JS, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–4196. doi: 10.2337/db14-0849.
    1. Heyrovsky A A new method for the determination of inulin in plasma and urine. Clin Chim Acta 1:470–474
    1. Waugh WH, Beall PT. Simplified measurement of p-aminohippurate and other arylamines in plasma and urine. Kidney Int. 1974;5:429–436. doi: 10.1038/ki.1974.61.
    1. Levinsky NG, Levy M. Clearance techniques. In: Geiger SR, editor. Handbook of physiology, section 8: renal physiology. Baltimore: Williams & Wilkins; 1973. pp. 103–117.
    1. Gomez DM. Evaluation of renal resistances, with special reference to changes in essential hypertension. J Clin Invest. 1951;30:1143–1155. doi: 10.1172/JCI102534.
    1. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098.
    1. Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54:965–978. doi: 10.1007/s00125-010-2028-x.
    1. Von Scholten BJ, Lajer M, Goetze JP, et al. Research: Treatment time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet Med. 2015;32:343–352. doi: 10.1111/dme.12594.
    1. von Scholten BJ, Hansen TW, Goetze JP, et al. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): long-term effect on kidney function in patients with type 2 diabetes. J Diabetes Complications. 2015;29:670–674. doi: 10.1016/j.jdiacomp.2015.04.004.
    1. Imamura S, Hirai K, Hirai A. The glucagon-like peptide-1 receptor agonist, liraglutide, attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients. Tohoku J Exp Med. 2013;231:57–61. doi: 10.1620/tjem.231.57.
    1. Crajoinas RO, Oricchio FT, Pessoa TD, et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol. 2011;301:F355–F363. doi: 10.1152/ajprenal.00729.2010.
    1. Moreno C, Mistry M, Roman RJ. Renal effects of glucagon-like peptide in rats. Eur J Pharmacol. 2002;434:163–167. doi: 10.1016/S0014-2999(01)01542-4.
    1. Jensen EP, Poulsen SS, Kissow H, et al. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow. Am J Physiol Ren Physiol. 2015;308:F867–F877. doi: 10.1152/ajprenal.00527.2014.
    1. Zhou X, Huang CH, Lao J, et al. Acute hemodynamic and renal effects of glucagon-like peptide 1 analog and dipeptidyl peptidase-4 inhibitor in rats. Cardiovasc Diabetol. 2015;14:29. doi: 10.1186/s12933-015-0194-3.
    1. Rieg T, Gerasimova M, Murray F, et al. Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am J Physiol Ren Physiol. 2012;303:F963–F971. doi: 10.1152/ajprenal.00259.2012.
    1. Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511. doi: 10.1152/physrev.00042.2012.
    1. Vallon V. Tubuloglomerular feedback and the control of glomerular filtration rate. News Physiol Sci. 2003;18:169–174.
    1. Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155:1280–1290. doi: 10.1210/en.2013-1934.
    1. Williams SB, Cusco JA, Roddy MA, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567–574. doi: 10.1016/0735-1097(95)00522-6.
    1. Dineen SL, McKenney ML, Bell LN, et al. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle. Diabetes. 2015;64:3321–3327. doi: 10.2337/db14-1790.
    1. Smits MM, Muskiet MH, Tonneijck L, et al. Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males. Br J Clin Pharmacol. 2016;81:613–620. doi: 10.1111/bcp.12843.
    1. Lovshin JA, Barnie A, DeAlmeida A, et al. Liraglutide Promotes Natriuresis but Does Not Increase Circulating Levels of Atrial Natriuretic Peptide in Hypertensive Subjects With Type 2 Diabetes. Diabetes Care. 2015;38:132–139. doi: 10.2337/dc14-1958.
    1. McDonough AA, Leong PK, Yang LE. Mechanisms of pressure natriuresis: how blood pressure regulates renal sodium transport. Ann N Y Acad Sci. 2003;986:669–677. doi: 10.1111/j.1749-6632.2003.tb07281.x.
    1. Mendis B, Simpson E, MacDonald I, Mansell P. Investigation of the haemodynamic effects of exenatide in healthy male subjects. Br J Clin Pharmacol. 2012;74:437–444. doi: 10.1111/j.1365-2125.2012.04214.x.
    1. Ten Kulve JS, van Bloemendaal L, Balesar R et al (2015) Decreased hypothalamic glucagon-like peptide-1 receptor expression in type 2 diabetes patients. J Clin Endocrinol Metab doi:jc20153291
    1. Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology. 1997;138:4445–4455.
    1. Isbil-Buyukcoskun N, Gulec G. Effects of intracerebroventricularly injected glucagon-like peptide-1 on cardiovascular parameters; role of central cholinergic system and vasopressin. Regul Pept. 2004;118:33–38. doi: 10.1016/j.regpep.2003.10.025.
    1. Gutzwiller J-P, Hruz P, Huber AR, et al. Glucagon-like peptide-1 is involved in sodium and water homeostasis in humans. Digestion. 2006;73:142–150. doi: 10.1159/000094334.
    1. Marina AS, Kutina AV, Natochin YV. Exenatide stimulates solute-free water clearance by the rat kidney in hyperhydration. Dokl Biol Sci. 2011;437:85–87. doi: 10.1134/S0012496611020128.
    1. Shakhmatova EI, Shutskaia ZV, Vladimirova ME, et al. Exenatide stimulated solute-free water excretion by human kidney. Ross Fiziol Zh Im I M Sechenova. 2012;98:1021–1029.
    1. Kutina AV, Marina AS, Shakhmatova EI, Natochin YV. Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic. Clin Exp Pharmacol Physiol. 2013;40:510–517. doi: 10.1111/1440-1681.12119.
    1. Skøtt P, Vaag A, Hother-Nielsen O, et al. Effects of hyperglycaemia on kidney function, atrial natriuretic factor and plasma renin in patients with insulin-dependent diabetes mellitus. Scand J Clin Lab Invest. 1991;51:715–727. doi: 10.3109/00365519109104586.
    1. Myers GL, Miller WG, Coresh J, et al. Recommendations for improving serum creatinine measurement: A report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52:5–18. doi: 10.1373/clinchem.2005.0525144.

Source: PubMed

3
Se inscrever